130 research outputs found

    AVIATR - Aerial Vehicle for In-situ and Airborne Titan Reconnaissance A Titan Airplane Mission Concept

    Get PDF
    We describe a mission concept for a stand-alone Titan airplane mission: Aerial Vehicle for In-situ and Airborne Titan Reconnaissance (AVIATR). With independent delivery and direct-to-Earth communications, AVIATR could contribute to Titan science either alone or as part of a sustained Titan Exploration Program. As a focused mission, AVIATR as we have envisioned it would concentrate on the science that an airplane can do best: exploration of Titan's global diversity. We focus on surface geology/hydrology and lower-atmospheric structure and dynamics. With a carefully chosen set of seven instruments-2 near-IR cameras, 1 near-IR spectrometer, a RADAR altimeter, an atmospheric structure suite, a haze sensor, and a raindrop detector-AVIATR could accomplish a significant subset of the scientific objectives of the aerial element of flagship studies. The AVIATR spacecraft stack is composed of a Space Vehicle (SV) for cruise, an Entry Vehicle (EV) for entry and descent, and the Air Vehicle (AV) to fly in Titan's atmosphere. Using an Earth-Jupiter gravity assist trajectory delivers the spacecraft to Titan in 7.5 years, after which the AVIATR AV would operate for a 1-Earth-year nominal mission. We propose a novel 'gravity battery' climb-then-glide strategy to store energy for optimal use during telecommunications sessions. We would optimize our science by using the flexibility of the airplane platform, generating context data and stereo pairs by flying and banking the AV instead of using gimbaled cameras. AVIATR would climb up to 14 km altitude and descend down to 3.5 km altitude once per Earth day, allowing for repeated atmospheric structure and wind measurements all over the globe. An initial Team-X run at JPL priced the AVIATR mission at FY10 $715M based on the rules stipulated in the recent Discovery announcement of opportunity. Hence we find that a standalone Titan airplane mission can achieve important science building on Cassini's discoveries and can likely do so within a New Frontiers budget

    Regulation of benthic oxygen fluxes in permeable sediments of the coastal ocean

    Get PDF
    Large areas of the oceanic shelf are composed of sandy sediments through which reactive solutes are transported via porewater advection fueling active microbial communities. The advective oxygen transport in permeable sands of the North Sea was investigated under in situ conditions using a new benthic observatory to assess the dynamic interaction of hydrodynamics, sediment morphodynamics, and oxygen penetration depth. During 16 deployments, concurrent measurement of current velocity, sediment topography, and porewater oxygen concentration were carried out. In all cases the oxyclines were found at depths of 1–6 cm, correlating with the topography of stationary and migrating bedforms (ripples). Different conditions in terms of bottom water currents and bedform migration led to fluctuating oxygen penetration depths and, hence, highly variable redox conditions in up to 2.5 cm thick layers beneath the surface. Volumetric oxygen consumption rates of surface sediments were measured on board in flow-through reactors. Bedform migration was found to reduce consumption rates by up to 50%, presumably caused by the washout of organic carbon that is otherwise trapped in the pore space of the sediment. Based on the observations we found oxygen penetration depths to be largely controlled by oxygen consumption rates, grain size, and current velocity. These controlling variables are summarized by an adapted Damköhler number which allows for prediction of oxygen penetretion depths based on a simple scaling law. By integrating the oxygen consumption rates over the oxygen penetration depth, oxygen fluxes of 8–34 mmol m−2 d−1 were estimate
    • …
    corecore