1,255 research outputs found

    Optical packaging of microlens over UV-LED array

    Get PDF
    Abstract unavailable please refer to PD

    Electrodynamic droplet actuation for lab on a chip system

    No full text
    This work presents the development of electrowetting on dielectric and liquid dielectrophoresis as a platform for chemistry, biochemistry and biophysics. These techniques, typically performed on a single planar surface offer flexibility for interfacing with liquid handling instruments and performing biological experimentation with easy access for visualisation. Technology for manipulating and mixing small volumes of liquid in microfluidic devices is also crucially important in chemical and biological protocols and Lab on a Chip devices and systems. The electrodynamic techniques developed here have rapid droplet translation speeds and bring small droplets into contact where inertial dynamics achieve rapid mixing upon coalescence.In this work materials and fabrication processes for both electrowetting on dielectric and liquid dielectrophoresis technology have been developed and refined. The frequency, voltage and contact angle dependent behaviour of both techniques have been measured using two parallel coplanar electrodes. The frequency dependencies of electrowetting and dielectrophoretic liquid actuation indicate that these effects are high and low-frequency limits, respectively, of a complex set of forces. An electrowetting based particle mixer was developed using a custom made electrode array and the effect of varying voltage and frequency on droplet mixing was examined, with the highest efficiency mixing being achieved at 1 kHz and 110 V in about 0.55 seconds.A composite electrodynamic technique was used to develop a reliable method for the formation of artificial lipid bilayers within microfluidic platforms for measuring basic biophysical aspects of cell membranes, for biosensing and drug discovery applications. Formation of artificial bilayer lipid membranes (BLMs) was demonstrated at the interface of aqueous droplets submerged in an organic solvent-lipid phase using the liquid dielectrophoresis methods developed in this project to control the droplet movement and bring multiple droplets into contact without coalescence. This technique provides a flexible, reconfigurable method for forming, disassembling and reforming BLMs within a microsystem under simple electronic control. BLM formation was shown to be extremely reliable and the BLMs formed were stable (with lifetimes of up to 20 hours) and therefore were suitable for electrophysiological analysis. This system was used to assess whether nanoparticle-membrane contact leads to perturbation of the membrane structure. The conductance of artificial membranes was monitored following exposure to nanoparticles using this droplet BLM system. It was demonstrated that the presence of nanoparticles with diameters between 50 and 500 nm can damage protein-free membranes at particle concentrations in the femtomolar range. The effects of particle size and surface chemistry were also investigated. It was shown that a large number of nanoparticles can translocate across a membrane, even when the surface coverage is relatively low, indicating that nanoparticles can exhibit significant cytotoxic effects

    ????????????/???????????? ?????? ?????? ?????? ???????????? ??? ????????? ??????????????????

    Get PDF
    Department of Energy EngineeringElectronic skins (e-skins) enabling to detect various mechanical/chemical stimuli and environmental conditions by converting into various electrical and optical signals have attracted much attentions for various fields including wearable electronics, intelligent/medical robotics, healthcare monitoring devices, and haptic interfaces. Conventional e-skins have been widely used for the realization of these applications, however it is still considered that new e-skins with enhanced sensor performances (i.e. sensitivity, flexibility, multifunctionality, etc.) should be developed. In accordance with these demands, two approaches to explore novel functional materials or to modify device architectures have been introduced for enhancing sensor performance and acquiring multifunctional sensing capabilities. Firstly, a synthesis of multifunctional materials combined with conductive fillers (carbon nanotube, graphene oxide) and functional polymer matrix (i.e. ferroelectric polymer, elastomer) can provide the multimodal sensing capability of various stimuli and stretchability. Secondly, controlling design of device structures into various micro/nanostructures enables a significant improvement on sensing capabilities of e-skins with sensitivity and multidirectional force sensing, resulting from structural advantages such as large surface area, effective stress propagation, and anisotropic deformation. Therefore, a demonstration of e-skin combined with the functional composites and uniquely designed microstructures can offer a powerful platform to realize ideal sensor systems for next generation applications such as wearable electronics, healthcare devices, acoustic sensor, and haptic interface devices. In this thesis, we introduce the novel multifunctional and high performance electronic skins combined with various types of composite materials and nature-inspired 3D microstructures. Firstly, Chapter 1 briefly introduces various types of e-skins and the latest research trends of microstructured e-skins and summarizes the key components for their promising application fields. In chapters 2 and 3, mimicked by interlocking system between epidermal and dermal layers in human skin, we demonstrate the piezoresistive e-skins based on CNT/PDMS composite materials with interlocked microdome arrays for great pressure sensitivity and multidirectional force sensing capabilities. In chapter 4, we conduct in-depth study on giant tunneling piezoresistance in interlocking system and investigate systematically on the geometrical effect of microstructures on multidirectional force sensitivity and selectivity in interlocking sensor systems. In chapter 5, we demonstrate the ferroelectric e-skin that can detect and discriminate the static/dynamic touches and temperature inspired by multi-stimuli detection of various mechanoreceptors in human skin. Using the multifunctional sensing capabilities, we demonstrated our e-skin to the temperature-dependent pressure monitoring of artery vessel, high-precision acoustic sound detection, and surface texture recognition of various surfaces. In chapter 6, we demonstrate the linear and wide range pressure sensor with multilayered composite films having interlocked microdomes. In chapter 7, we present a new-concept of e-skin based on mechanochromic polymer and porous structures for overcoming limitations in conventional mechanochromic systems with low mechanochromic performances and limited stretchability. In addition, our mechanochromic e-skins enable the dual-mode detection of static and dynamic forces without any external power. Our e-skins based on functional composites and uniquely designed microstructures can provide a solid platform for next generation eskin in wearable electronics, humanoid robotics, flexible sensors, and wearable medical diagnostic systems.clos

    Microfluidic manipulation by AC Electrothermal effect

    Get PDF
    AC Electrokinetics (ACEK) has attracted much research interest for microfluidic manipulation for the last few years. It shows great potential for functions such as micropumping, mixing and concentrating particles. Most of current ACEK research focuses on AC electroosmosis (ACEO), which is limited to solutions with conductivity less than 0.02 S/m, excluding most biofluidic applications. To solve for this problem, this dissertation seeks to apply AC electrothermal (ACET) effect to manipulate conductive fluids and particles within, and it is among the first demonstration of ACET devices, a particle trap and an ACET micropump. The experiments used fluids at a conductivity of 0.224 S/m that is common in bio-applications. Pumping and trapping were demonstrated at low voltages, reaching ~100 um/s for no more than 8 Vrms at 200 kHz. The flow velocity was measured to follow a quadratic relationship with applied voltage which is in accordance with theory. This research also studies ACET effect on low ionic strength microfluidics, since Joule heating is ubiquitous in electrokinetic devices. One contribution is that our study suggested ACET as one possible reason of flow reversal, which has intrigued the researchers in ACEK field. Electrically, a microfluidic cell can be viewed as an impedance network of capacitances and resistors. Heat dissipation in those elements varies with AC frequency and fluid properties, so changes the relative importance of heat generation at the electrode/electrolyte interface and in the resistive fluid bulk, which could change the temperature gradient in the device, hence changing the flow direction. Another contribution of this dissertation is the reaction enhanced ACET micropumping. A dramatic improvement in flow rate over conventional ac micropumps is achieved by introducing a thin fluid layer of high ionic density near the electrodes. Such an ionic layer is produced by superimposing a DC offset on AC signal that induces Faradaic reaction. The velocity improvement, in some cases, is over an order of magnitude, reaching a linear velocity of up to 2.5 mm/s with only 5.4Vrms. This discovery presents an exciting opportunity of utilizing ACET effect in microfluidic applications

    Advance in Energy Harvesters/Nanogenerators and Self-Powered Sensors

    Get PDF
    This reprint is a collection of the Special Issue "Advance in Energy Harvesters/Nanogenerators and Self-Powered Sensors" published in Nanomaterials, which includes one editorial, six novel research articles and four review articles, showcasing the very recent advances in energy-harvesting and self-powered sensing technologies. With its broad coverage of innovations in transducing/sensing mechanisms, material and structural designs, system integration and applications, as well as the timely reviews of the progress in energy harvesting and self-powered sensing technologies, this reprint could give readers an excellent overview of the challenges, opportunities, advancements and development trends of this rapidly evolving field

    Biomedical Sensing and Imaging

    Get PDF
    This book mainly deals with recent advances in biomedical sensing and imaging. More recently, wearable/smart biosensors and devices, which facilitate diagnostics in a non-clinical setting, have become a hot topic. Combined with machine learning and artificial intelligence, they could revolutionize the biomedical diagnostic field. The aim of this book is to provide a research forum in biomedical sensing and imaging and extend the scientific frontier of this very important and significant biomedical endeavor

    Human locomotion energy harvesting

    Get PDF

    Hierarchical Honeycomb-structured Electret/Triboelectric Nanogenerator for Biomechanical and Morphing Wing Energy Harvesting

    Get PDF
    Flexible, compact, lightweight and sustainable power sources are indispensable for modern wearable and personal electronics and small-unmanned aerial vehicles (UAVs). Hierarchical honeycomb has the unique merits of compact mesostructures, excellent energy absorption properties and considerable weight to strength ratios. Herein, a honeycomb-inspired triboelectric nanogenerator (h-TENG) is proposed for biomechanical and UAV morphing wing energy harvesting based on contact triboelectrification wavy surface of cellular honeycomb structure. The wavy surface comprises a multilayered thin film structure (combining polyethylene terephthalate, silver nanowires and fluorinated ethylene propylene) fabricated through high-temperature thermoplastic molding and wafer-level bonding process. With superior synchronization of large amounts of energy generation units with honeycomb cells, the manufactured h-TENG prototype produces the maximum instantaneous open-circuit voltage, short-circuit current and output power of 1207 V, 68.5 μA and 12.4 mW, respectively, corresponding to a remarkable peak power density of 0.275 mW/cm3 (or 2.48 mW/g) under hand-pressing excitations. Attributed to the excellent elastic property of self-rebounding honeycomb structure, the flexible and transparent h-TENG can be easily pressed, bent, and integrated into shoes for real-time insole plantar pressure mapping. The lightweight and compact h-TENG is further installed into a morphing wing of small UAVs for efficiently converting the flapping energy of ailerons into electricity for the first time. This research demonstrates this new conceptualizing single h-TENG device's versatility and viability for broad-range real-world application scenarios

    Smart Sensors for Healthcare and Medical Applications

    Get PDF
    This book focuses on new sensing technologies, measurement techniques, and their applications in medicine and healthcare. Specifically, the book briefly describes the potential of smart sensors in the aforementioned applications, collecting 24 articles selected and published in the Special Issue “Smart Sensors for Healthcare and Medical Applications”. We proposed this topic, being aware of the pivotal role that smart sensors can play in the improvement of healthcare services in both acute and chronic conditions as well as in prevention for a healthy life and active aging. The articles selected in this book cover a variety of topics related to the design, validation, and application of smart sensors to healthcare
    corecore