15,642 research outputs found

    SIMULATION OF THE ALCOHOL-OIL MIXTURE IN A T-SHAPED MICROCHANNEL USING THE DISSIPATIVE PARTICLE DYNAMICS METHOD ON GPU DEVICES

    Get PDF
    Multiphase fluid motion in microchannnels involves complicated fluid dynamics and is fundamentally important to diverse practical engineering applications. Among several applications, the alcohol-oil mixture is particularly important due to its application for biodiesel production. In this work, the mixture of immiscible fluids alcohol-oil in a square T-shaped microchannel was investigated using the Dissipative Particle Dynamics (DPD) method available in the HOOMD simulator, which runs on a single graphic processing unit (GPU). The immiscible fluids were achieved by increasing the repulsive force between species. The fluid properties and hydrodynamic behavior were discussed in function of model parameters. The simulation results agree with data published in the literature showing that the DPD is appropriate for simulation of mass transport on complex geometries in microscale on a single GPU

    Modelling the Interfacial Flow of Two Immiscible Liquids in Mixing Processes

    Get PDF
    This paper presents an interface tracking method for modelling the flow of immiscible metallic liquids in mixing processes. The methodology can provide an insight into mixing processes for studying the fundamental morphology development mechanisms for immiscible interfaces. The volume-of-fluid (VOF) method is adopted in the present study, following a review of various modelling approaches for immiscible fluid systems. The VOF method employed here utilises the piecewise linear for interface construction scheme as well as the continuum surface force algorithm for surface force modelling. A model coupling numerical and experimental data is established. The main flow features in the mixing process are investigated. It is observed that the mixing of immiscible metallic liquids is strongly influenced by the viscosity of the system, shear forces and turbulence. The numerical results show good qualitative agreement with experimental results, and are useful for optimisating the design of mixing casting processes

    Investigating the migration of immiscible contaminant fluid flow in homogeneous and heterogeneous aquifers with high-precision numerical simulations

    Get PDF
    Numerical modeling of the migration of three-phase immiscible fluid flow in variably saturated zones is challenging due to the different behavior of the system between unsaturated and saturated zones. This behavior results in the use of different numerical methods for the numerical simulation of the fluid flow depending on whether it is in the unsaturated or saturated zones. This paper shows that using a high-resolution shock-capturing conservative method to resolve the nonlinear governing coupled partial differential equations of a three-phase immiscible fluid flow allows the numerical simulation of the system through both zones providing a unitary vision (and resolution) of the migration of an immiscible contaminant problem within a porous medium. In particular, using different initial scenarios (including impermeable “lenses” in heterogeneous aquifers), three-dimensional numerical simulation results are presented on the temporal evolution of the contaminant migration following the saturation profiles of the three-phases fluids flow in variably saturated zones. It is considered either light nonaqueous phase liquid with a density less than the water, or dense nonaqueous phase liquid, which has densities greater than the water initially released in unsaturated dry soil. Our study shows that the fate of the migration of immiscible contaminants in variably saturated zones can be accurately described, using a unique mathematical conservative model, with different evolution depending on the value of the system’s physical parameters, including the contaminant density, and accurately tracking the evolution of the sharp (shock) contaminant front

    Structural transitions and arrest of domain growth in sheared binary immiscible fluids and microemulsions

    Get PDF
    We investigate spinodal decomposition and structuring effects in binary immiscible and ternary amphiphilic fluid mixtures under shear by means of three dimensional lattice Boltzmann simulations. We show that the growth of individual fluid domains can be arrested by adding surfactant to the system, thus forming a bicontinous microemulsion. We demonstrate that the maximum domain size and the time of arrest depend linearly on the concentration of amphiphile molecules. In addition, we find that for a well defined threshold value of amphiphile concentration, the maximum domain size and time of complete arrest do not change. For systems under constant and oscillatory shear we analyze domain growth rates in directions parallel and perpendicular to the applied shear. We find a structural transition from a sponge to a lamellar phase by applying a constant shear and the occurrence of tubular structures under oscillatory shear. The size of the resulting lamellae and tubes depends strongly on the amphiphile concentration, shear rate and shear frequency.Comment: 12 pages, 11 figure

    Coarsening dynamics of ternary amphiphilic fluids and the self-assembly of the gyroid and sponge mesophases: lattice-Boltzmann simulations

    Full text link
    By means of a three-dimensional amphiphilic lattice-Boltzmann model with short-range interactions for the description of ternary amphiphilic fluids, we study how the phase separation kinetics of a symmetric binary immiscible fluid is altered by the presence of the amphiphilic species. We find that a gradual increase in amphiphile concentration slows down domain growth, initially from algebraic, to logarithmic temporal dependence, and, at higher concentrations, from logarithmic to stretched-exponential form. In growth-arrested stretched-exponential regimes, at late times we observe the self-assembly of sponge mesophases and gyroid liquid crystalline cubic mesophases, hence confirming that (a) amphiphile-amphiphile interactions need not be long-ranged in order for periodically modulated structures to arise in a dynamics of competing interactions, and (b) a chemically-specific model of the amphiphile is not required for the self-assembly of cubic mesophases, contradicting claims in the literature. We also observe a structural order-disorder transition between sponge and gyroid phases driven by amphiphile concentration alone or, independently, by the amphiphile-amphiphile and the amphiphile-binary fluid coupling parameters. For the growth-arrested mesophases, we also observe temporal oscillations in the structure function at all length scales; most of the wavenumbers show slow decay, and long-term stationarity or growth for the others. We ascribe this behaviour to a combination of complex amphiphile dynamics leading to Marangoni flows.Comment: 16 pages, 13 figures. Accepted for publication in Phys. Rev. E. (Replaced for the latest version, in press.) Higher-quality figures can be sent upon reques

    A local lattice Boltzmann method for multiple immiscible fluids and dense suspensions of drops

    Get PDF
    The lattice Boltzmann method (LBM) for computational fluid dynamics benefits from a simple, explicit, completely local computational algorithm making it highly efficient. We extend LBM to recover hydrodynamics of multi-component immiscible fluids, whilst retaining a completely local, explicit and simple algorithm. Hence, no computationally expensive lattice gradients, interaction potentials or curvatures, that use information from neighbouring lattice sites, need be calculated, which makes the method highly scalable and suitable for high performance parallel computing. The method is analytic and is shown to recover correct continuum hydrodynamic equations of motion and interfacial boundary conditions. This LBM may be further extended to situations containing a high number (O(100)) of individually immiscible drops. We make comparisons of the emergent non-Newtonian behaviour with a power-law fluid model. We anticipate our method will have a range applications in engineering, industrial and biological sciences

    A new lattice Boltzmann model for interface reactions between immiscible fluids

    Get PDF
    In this paper, we describe a lattice Boltzmann model to simulate chemical reactions taking place at the interface between two immiscible fluids. The phase-field approach is used to identify the interface and its orientation, the concentration of reactant at the interface is then calculated iteratively to impose the correct reactive flux condition. The main advantages of the model is that interfaces are considered part of the bulk dynamics with the corrective reactive flux introduced as a source/sink term in the collision step, and, as a consequence, the model’s implementation and performance is independent of the interface geometry and orientation. Results obtained with the proposed model are compared to analytical solution for three different benchmark tests (stationary flat boundary, moving flat boundary and dissolving droplet). We find an excellent agreement between analytical and numerical solutions in all cases. Finally, we present a simulation coupling the Shan Chen multiphase model and the interface reactive model to simulate the dissolution of a collection of immiscible droplets with different sizes rising by buoyancy in a stagnant fluid
    corecore