12,136 research outputs found

    Throughput/Area-efficient ECC Processor Using Montgomery Point Multiplication on FPGA

    Get PDF
    High throughput while maintaining low resource is a key issue for elliptic curve cryptography (ECC) hardware implementations in many applications. In this brief, an ECC processor architecture over Galois fields is presented, which achieves the best reported throughput/area performance on field-programmable gate array (FPGA) to date. A novel segmented pipelining digit serial multiplier is developed to speed up ECC point multiplication. To achieve low latency, a new combined algorithm is developed for point addition and point doubling with careful scheduling. A compact and flexible distributed-RAM-based memory unit design is developed to increase speed while keeping area low. Further optimizations were made via timing constraints and logic level modifications at the implementation level. The proposed architecture is implemented on Virtex4 (V4), Virtex5 (V5), and Virtex7 (V7) FPGA technologies and, respectively, achieved throughout/slice figures of 19.65, 65.30, and 64.48 (106/(Seconds × Slices))

    Towards a triple mode common operator FFT for Software Radio systems

    Get PDF
    International audienceA scenario to design a Triple Mode FFT is addressed. Based on a Dual Mode FFT structure, we present a methodology to reach a triple mode FFT operator (TMFFT) able to operate over three different fields: complex number domain C, Galois Fields GF(Ft) and GF(2m). We propose a reconfigurable Triple mode Multiplier that constitutes the core of the Butterflybased FFT. A scalable and flexible unit for the polynomial reduction needed in the GF(2m) multiplication is also proposed. An FPGA implementation of the proposed multiplier is given and the measures show a gain of 18%in terms of performance-to-cost ratio compared to a "Velcro" approach where two self-contained operators are implemented separately

    Adaptable Security in Wireless Sensor Networks by Using Reconfigurable ECC Hardware Coprocessors

    Get PDF
    Specific features of Wireless Sensor Networks (WSNs) like the open accessibility to nodes, or the easy observability of radio communications, lead to severe security challenges. The application of traditional security schemes on sensor nodes is limited due to the restricted computation capability, low-power availability, and the inherent low data rate. In order to avoid dependencies on a compromised level of security, a WSN node with a microcontroller and a Field Programmable Gate Array (FPGA) is used along this work to implement a state-of-the art solution based on ECC (Elliptic Curve Cryptography). In this paper it is described how the reconfiguration possibilities of the system can be used to adapt ECC parameters in order to increase or reduce the security level depending on the application scenario or the energy budget. Two setups have been created to compare the software- and hardware-supported approaches. According to the results, the FPGA-based ECC implementation requires three orders of magnitude less energy, compared with a low power microcontroller implementation, even considering the power consumption overhead introduced by the hardware reconfiguratio

    Hardware Implementations of Scalable and Unified Elliptic Curve Cryptosystem Processors

    Get PDF
    As the amount of information exchanged through the network grows, so does the demand for increased security over the transmission of this information. As the growth of computers increased in the past few decades, more sophisticated methods of cryptography have been developed. One method of transmitting data securely over the network is by using symmetric-key cryptography. However, a drawback of symmetric-key cryptography is the need to exchange the shared key securely. One of the solutions is to use public-key cryptography. One of the modern public-key cryptography algorithms is called Elliptic Curve Cryptography (ECC). The advantage of ECC over some older algorithms is the smaller number of key sizes to provide a similar level of security. As a result, implementations of ECC are much faster and consume fewer resources. In order to achieve better performance, ECC operations are often offloaded onto hardware to alleviate the workload from the servers' processors. The most important and complex operation in ECC schemes is the elliptic curve point multiplication (ECPM). This thesis explores the implementation of hardware accelerators that offload the ECPM operation to hardware. These processors are referred to as ECC processors, or simply ECPs. This thesis targets the efficient hardware implementation of ECPs specifically for the 15 elliptic curves recommended by the National Institute of Standards and Technology (NIST). The main contribution of this thesis is the implementation of highly efficient hardware for scalable and unified finite field arithmetic units that are used in the design of ECPs. In this thesis, scalability refers to the processor's ability to support multiple key sizes without the need to reconfigure the hardware. By doing so, the hardware does not need to be redesigned for the server to handle different levels of security. Unified refers to the ability of the ECP to handle both prime and binary fields. The resultant designs are valuable to the research community and industry, as a single hardware device is able to handle a wide range of ECC operations efficiently and at high speeds. Thus, improving the ability of network servers to handle secure transaction more quickly and improve productivity at lower costs

    A Flexible Crypto-system Based upon the REDEFINE Polymorphic ASIC Architecture

    Get PDF
    The highest levels of security can be achieved through the use of more than one type of cryptographic algorithm for each security function. In this paper, the REDEFINE polymorphic architecture is presented as an architecture framework that can optimally support a varied set of crypto algorithms without losing high performance. The presented solution is capable of accelerating the advanced encryption standard (AES) and elliptic curve cryptography (ECC) cryptographic protocols, while still supporting different flavors of these algorithms as well as different underlying finite field sizes. The compelling feature of this cryptosystem is the ability to provide acceleration support for new field sizes as well as new (possibly proprietary) cryptographic algorithms decided upon after the cryptosystem is deployed.Defence Science Journal, 2012, 62(1), pp.25-31, DOI:http://dx.doi.org/10.14429/dsj.62.143

    Versatile Montgomery Multiplier Architectures

    Get PDF
    Several algorithms for Public Key Cryptography (PKC), such as RSA, Diffie-Hellman, and Elliptic Curve Cryptography, require modular multiplication of very large operands (sizes from 160 to 4096 bits) as their core arithmetic operation. To perform this operation reasonably fast, general purpose processors are not always the best choice. This is why specialized hardware, in the form of cryptographic co-processors, become more attractive. Based upon the analysis of recent publications on hardware design for modular multiplication, this M.S. thesis presents a new architecture that is scalable with respect to word size and pipelining depth. To our knowledge, this is the first time a word based algorithm for Montgomery\u27s method is realized using high-radix bit-parallel multipliers working with two different types of finite fields (unified architecture for GF(p) and GF(2n)). Previous approaches have relied mostly on bit serial multiplication in combination with massive pipelining, or Radix-8 multiplication with the limitation to a single type of finite field. Our approach is centered around the notion that the optimal delay in bit-parallel multipliers grows with logarithmic complexity with respect to the operand size n, O(log3/2 n), while the delay of bit serial implementations grows with linear complexity O(n). Our design has been implemented in VHDL, simulated and synthesized in 0.5μ CMOS technology. The synthesized net list has been verified in back-annotated timing simulations and analyzed in terms of performance and area consumption

    Hardware Implementation of Bit-Parallel Finite Field Multipliers Based on Overlap-free Algorithm on FPGA

    Get PDF
    Cryptography can be divided into two fundamentally different classes: symmetric-key and public-key. Compared with symmetric-key cryptography, where the complexity of the security system relies on a single key between receiver and sender, public-key cryptographic system using two separate but mathematically related keys. Finite field multiplication is a key operation used in all cryptographic systems relied on finite field arithmetic as it not only is computationally complex but also one of the most frequently used finite field operations. Karatsuba algorithm and its generalization are most often used to construct multiplication architectures with significantly improved in these decades. However, one of its optimized architecture called Overlap-free Karatsuba algorithm has been mentioned by fewer people and even its implementation on FPGA has not been mentioned by anyone. After completion of a detailed study of this specific algorithm, this thesis has proposed implementation of modified Overlap-free Karatsuba algorithm on Xilinx Spartan-605. Applied this algorithm and its specific architecture, reduced gates or shorten critical path will be achieved for the given value of n.Optimized multiplication architecture, generated from proposed modified Overlap-free Karatsuba algorithm and applied on FPGA board,over NIST recommended fields (n = 128), are presented and analysed in detail. Compared with existing works with sub-quadratic space and time complexities, the proposed modified algorithm is highly recommended module and have improved on both space and time complexities. At last, generalization of proposed modified algorithm is suitable for much larger size of finite fields, and improvements of FPGA itself have been discussed
    • …
    corecore