4,322 research outputs found

    Coherence and measurement in quantum thermodynamics

    Full text link
    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines and fridges to power plants and solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Here we identify information processing tasks, the so-called "projections", that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Implications are far-reaching, adding a thermodynamic dimension to measurements performed in quantum thermodynamics experiments, and providing key input for the construction of a future quantum thermodynamic framework. Repercussions are discussed for quantum work fluctuation relations and thermodynamic single-shot approaches.Comment: 6 pages + appendix, 4 figures, v2: changed presentation, critically discuss interpretation as measurement, added new conclusions; previous title: "Quantum measurement and its role in thermodynamics

    Secure covert communications over streaming media using dynamic steganography

    Get PDF
    Streaming technologies such as VoIP are widely embedded into commercial and industrial applications, so it is imperative to address data security issues before the problems get really serious. This thesis describes a theoretical and experimental investigation of secure covert communications over streaming media using dynamic steganography. A covert VoIP communications system was developed in C++ to enable the implementation of the work being carried out. A new information theoretical model of secure covert communications over streaming media was constructed to depict the security scenarios in streaming media-based steganographic systems with passive attacks. The model involves a stochastic process that models an information source for covert VoIP communications and the theory of hypothesis testing that analyses the adversary‘s detection performance. The potential of hardware-based true random key generation and chaotic interval selection for innovative applications in covert VoIP communications was explored. Using the read time stamp counter of CPU as an entropy source was designed to generate true random numbers as secret keys for streaming media steganography. A novel interval selection algorithm was devised to choose randomly data embedding locations in VoIP streams using random sequences generated from achaotic process. A dynamic key updating and transmission based steganographic algorithm that includes a one-way cryptographical accumulator integrated into dynamic key exchange for covert VoIP communications, was devised to provide secure key exchange for covert communications over streaming media. The discrete logarithm problem in mathematics and steganalysis using t-test revealed the algorithm has the advantage of being the most solid method of key distribution over a public channel. The effectiveness of the new steganographic algorithm for covert communications over streaming media was examined by means of security analysis, steganalysis using non parameter Mann-Whitney-Wilcoxon statistical testing, and performance and robustness measurements. The algorithm achieved the average data embedding rate of 800 bps, comparable to other related algorithms. The results indicated that the algorithm has no or little impact on real-time VoIP communications in terms of speech quality (< 5% change in PESQ with hidden data), signal distortion (6% change in SNR after steganography) and imperceptibility, and it is more secure and effective in addressing the security problems than other related algorithms

    Firmware Insider: Bluetooth Randomness is Mostly Random

    Full text link
    Bluetooth chips must include a Random Number Generator (RNG). This RNG is used internally within cryptographic primitives but also exposed to the operating system for chip-external applications. In general, it is a black box with security-critical authentication and encryption mechanisms depending on it. In this paper, we evaluate the quality of RNGs in various Broadcom and Cypress Bluetooth chips. We find that the RNG implementation significantly changed over the last decade. Moreover, most devices implement an insecure Pseudo-Random Number Generator (PRNG) fallback. Multiple popular devices, such as the Samsung Galaxy S8 and its variants as well as an iPhone, rely on the weak fallback due to missing a Hardware Random Number Generator (HRNG). We statistically evaluate the output of various HRNGs in chips used by hundreds of millions of devices. While the Broadcom and Cypress HRNGs pass advanced tests, it remains indistinguishable for users if a Bluetooth chip implements a secure RNG without an extensive analysis as in this paper. We describe our measurement methods and publish our tools to enable further public testing.Comment: WOOT'2

    The Nature of Ephemeral Secrets in Reverse Engineering Tasks

    Get PDF
    Reverse engineering is typically carried out on static binary objects, such as files or compiled programs. Often the goal of reverse engineering is to extract a secret that is ephemeral and only exists while the system is running. Automation and dynamic analysis enable reverse engineers to extract ephemeral secrets from dynamic systems, obviating the need for analyzing static artifacts such as executable binaries. I support this thesis through four automated reverse engineering efforts: (1) named entity extraction to track Chinese Internet censorship based on keywords; (2) dynamic information flow tracking to locate secret keys in memory for a live program; (3) man-in-the-middle to emulate server behavior for extracting cryptographic secrets; and, (4) large-scale measurement and data mining of TCP/IP handshake behaviors to reveal machines on the Internet vulnerable to TCP/IP hijacking and other attacks. In each of these cases, automation enables the extraction of ephemeral secrets, often in situations where there is no accessible static binary object containing the secret. Furthermore, each project was contingent on building an automated system that interacted with the dynamic system in order to extract the secret(s). This general approach provides a new perspective, increasing the types of systems that can be reverse engineered and provides a promising direction for the future of reverse engineering

    TOWARD AUTOMATED THREAT MODELING BY ADVERSARY NETWORK INFRASTRUCTURE DISCOVERY

    Get PDF
    Threat modeling can help defenders ascertain potential attacker capabilities and resources, allowing better protection of critical networks and systems from sophisticated cyber-attacks. One aspect of the adversary profile that is of interest to defenders is the means to conduct a cyber-attack, including malware capabilities and network infrastructure. Even though most defenders collect data on cyber incidents, extracting knowledge about adversaries to build and improve the threat model can be time-consuming. This thesis applies machine learning methods to historical cyber incident data to enable automated threat modeling of adversary network infrastructure. Using network data of attacker command and control servers based on real-world cyber incidents, specific adversary datasets can be created and enriched using the capabilities of internet-scanning search engines. Mixing these datasets with data from benign or non-associated hosts with similar port-service mappings allows for building an interpretable machine learning model of attackers. Additionally, creating internet-scanning search engine queries based on machine learning model predictions allows for automating threat modeling of adversary infrastructure. Automated threat modeling of adversary network infrastructure allows searching for unknown or emerging threat actor network infrastructure on the Internet.Major, Ukrainian Ground ForcesApproved for public release. Distribution is unlimited
    • …
    corecore