20,955 research outputs found

    The intrinsic value of HFO features as a biomarker of epileptic activity

    Full text link
    High frequency oscillations (HFOs) are a promising biomarker of epileptic brain tissue and activity. HFOs additionally serve as a prototypical example of challenges in the analysis of discrete events in high-temporal resolution, intracranial EEG data. Two primary challenges are 1) dimensionality reduction, and 2) assessing feasibility of classification. Dimensionality reduction assumes that the data lie on a manifold with dimension less than that of the feature space. However, previous HFO analyses have assumed a linear manifold, global across time, space (i.e. recording electrode/channel), and individual patients. Instead, we assess both a) whether linear methods are appropriate and b) the consistency of the manifold across time, space, and patients. We also estimate bounds on the Bayes classification error to quantify the distinction between two classes of HFOs (those occurring during seizures and those occurring due to other processes). This analysis provides the foundation for future clinical use of HFO features and buides the analysis for other discrete events, such as individual action potentials or multi-unit activity.Comment: 5 pages, 5 figure

    Extrinsic Methods for Coding and Dictionary Learning on Grassmann Manifolds

    Get PDF
    Sparsity-based representations have recently led to notable results in various visual recognition tasks. In a separate line of research, Riemannian manifolds have been shown useful for dealing with features and models that do not lie in Euclidean spaces. With the aim of building a bridge between the two realms, we address the problem of sparse coding and dictionary learning over the space of linear subspaces, which form Riemannian structures known as Grassmann manifolds. To this end, we propose to embed Grassmann manifolds into the space of symmetric matrices by an isometric mapping. This in turn enables us to extend two sparse coding schemes to Grassmann manifolds. Furthermore, we propose closed-form solutions for learning a Grassmann dictionary, atom by atom. Lastly, to handle non-linearity in data, we extend the proposed Grassmann sparse coding and dictionary learning algorithms through embedding into Hilbert spaces. Experiments on several classification tasks (gender recognition, gesture classification, scene analysis, face recognition, action recognition and dynamic texture classification) show that the proposed approaches achieve considerable improvements in discrimination accuracy, in comparison to state-of-the-art methods such as kernelized Affine Hull Method and graph-embedding Grassmann discriminant analysis.Comment: Appearing in International Journal of Computer Visio

    Universal features and tail analysis of the order-parameter distribution of the two-dimensional Ising model: An entropic sampling Monte Carlo study

    Full text link
    We present a numerical study of the order-parameter probability density function (PDF) of the square Ising model for lattices with linear sizes L=80−140L=80-140. A recent efficient entropic sampling scheme, combining the Wang-Landau and broad histogram methods and based on the high-levels of the Wang-Landau process in dominant energy subspaces is employed. We find that for large lattices there exists a stable window of the scaled order-parameter in which the full ansatz including the pre-exponential factor for the tail regime of the universal PDF is well obeyed. This window is used to estimate the equation of state exponent and to observe the behavior of the universal constants implicit in the functional form of the universal PDF. The probability densities are used to estimate the universal Privman-Fisher coefficient and to investigate whether one could obtain reliable estimates of the universal constants controlling the asymptotic behavior of the tail regime.Comment: 24 pages, 5 figure

    The Weak Coupling Spectrum around Isolated Vacua in N=4 Super Yang-Mills on T^3 with any Gauge Group

    Full text link
    The moduli space of flat connections for maximally supersymmetric Yang-Mills theories, in a space-time of the form T^3xR, contains isolated points, corresponding to normalizable zero energy states, for certain simple gauge groups G. We consider the low energy effective field theories in the weak coupling limit supported on such isolated points and find that when quantized they consist of an infinite set of harmonic oscillators whose angular frequencies are completely determined by the Lie algebra of G. We then proceed to find the isolated flat connections for all simple G and subsequently specify the corresponding effective field theories.Comment: 32 pages, 11 figures, v4 Added chapter, Published versio
    • …
    corecore