2,560 research outputs found

    Autonomous Pedestrian Detection in Transit Buses

    Get PDF
    This project created a proof of concept for an automated pedestrian detection and avoidance system designed for transit buses. The system detects objects up to 12 meters away, calculates the distance from the system using a solid-state LIDAR, and determines if that object is human by passive infrared. This triggers a visual and sound warning. A Xilinx Zynq-SoC utilizing programmable logic and an ARM-based processing system drive data fusion, and an external power unit makes it configurable for transit-buses

    Deployment and Operation of Complex Software in Heterogeneous Execution Environments

    Get PDF
    This open access book provides an overview of the work developed within the SODALITE project, which aims at facilitating the deployment and operation of distributed software on top of heterogeneous infrastructures, including cloud, HPC and edge resources. The experts participating in the project describe how SODALITE works and how it can be exploited by end users. While multiple languages and tools are available in the literature to support DevOps teams in the automation of deployment and operation steps, still these activities require specific know-how and skills that cannot be found in average teams. The SODALITE framework tackles this problem by offering modelling and smart editing features to allow those we call Application Ops Experts to work without knowing low level details about the adopted, potentially heterogeneous, infrastructures. The framework offers also mechanisms to verify the quality of the defined models, generate the corresponding executable infrastructural code, automatically wrap application components within proper execution containers, orchestrate all activities concerned with deployment and operation of all system components, and support on-the-fly self-adaptation and refactoring

    An Intelligent Transportation System Application for Smartphones Based on Vehicle Position Advertising and Route Sharing in Vehicular Ad-Hoc Networks

    Full text link
    [EN] Alerting drivers about incoming emergency vehicles and their routes can greatly improve their travel times in congested cities, while reducing the risk of accidents due to distractions. This paper contributes to this goal by proposing Messiah, an Android application capable of informing regular vehicles about incoming emergency vehicles like ambulances, police cars and fire brigades. This is made possible by creating a network of vehicles capable of directly communicating between them. The user can, therefore, take driving decisions in a timely manner by considering incoming alerts. Using the support of our GRCBox hardware, the application can rely on vehicular ad-hoc network communications in the 5 GHz band, being V2V (vehicle-to-vehicle) communication provided through a combination of Android-based smartphone and our GRCBox device. The application was tested in three different scenarios with different levels of obstruction, showing that it is capable of providing alerts up to 300 meters, and notifying vehicles within less than one secondThis work was partially supported by the "Ministerio de Economia y Competividad, Programa Estatal de Investigacion, Desarollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2014", Spain, under Grant Nos. TEC2014-52690-R and BES-2015-075988.Hadiwardoyo, SA.; Patra, S.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Manzoni, P. (2018). An Intelligent Transportation System Application for Smartphones Based on Vehicle Position Advertising and Route Sharing in Vehicular Ad-Hoc Networks. Journal of Computer Science and Technology. 33(2):249-262. https://doi.org/10.1007/s11390-018-1817-4S249262332Papadimitratos P, De La Fortelle A, Evenssen K, Brignolo R, Cosenza S. Vehicular communication systems: Enabling technologies, applications, and future outlook on intelligent transportation. IEEE Communications Magazine, 2009, 47(11): 84-95.Gerla M, Kleinrock L. Vehicular networks and the future of the mobile Internet. Computer Networks, 2011, 55(2): 457-469.Vegni A M, Loscrí V. A survey on vehicular social networks. IEEE Communications Surveys & Tutorials, 2015, 17(4): 2397-2419.Eze E C, Zhang S J, Liu E J. Vehicular ad hoc networks (VANETs): Current state, challenges, potentials and way forward. In Proc. the 20th Int. Conf. Automation and Computing, September 2014, pp.176-181.Qi L. Research on intelligent transportation system technologies and applications. In Proc. Workshop on Power Electronics and Intelligent Transportation System, August 2008, pp.529-531.Gozalvez J. First Google’s Android phone launched [Mobile Radio]. IEEE Vehicular Technology Magazine, 2008, 3(4): 3-69.Haklay M,Weber P. OpenStreetMap: User-generated street maps. IEEE Pervasive Computing, 2008, 7(4): 12-18.Hadiwardoyo S A, Patra S, Calafate C T, Cano J C, Manzoni P. An Android ITS driving safety application based on vehicle-to-vehicle (V2V) communications. In Proc. the 26th Int. Conf. Computer Communication and Networks, July 31-August 3, 2017.Eriksson J, Balakrishnan H, Madden S. Cabernet: Vehicular content delivery using WiFi. In Proc. the 14th ACM Int. Conf. Mobile Computing and Networking, September 2008, pp.199-210.Gerla M, Weng J T, Giordano E, Pau G. Vehicular testbeds-validating models and protocols before large scale deployment. In Proc. Int. Conf. Computing Networking and Communications, January 30-February 2, 2012, pp.665-669.Wahlström J, Skog I, Händel P. Smartphone-based vehicle telematics: A ten-year anniversary. IEEE Trans. Intelligent Transportation Systems, 2017, 18(10): 2802-2825.Whipple J, Arensman W, Boler M S. A public safety application of GPS-enabled smartphones and the Android operating system. In Proc. IEEE Int. Conf. Systems Man and Cybernetics, October 2009, pp.2059-2061.Meseguer J E, Calafate C T, Cano J C, Manzoni P. DrivingStyles: A smartphone application to assess driver behavior. In Proc. IEEE Symp. Computers and Communications, July 2013, pp.000535-000540.You C W, Lane N D, Chen F L, Wang R, Chen Z Y, Bao T J, Montes-De-Oca M, Cheng Y T, Lin M, Torresani L, Campbell A T. CarSafe app: Alerting drowsy and distracted drivers using dual cameras on smartphones. In Proc. the 11th Annual Int. Conf. Mobile Systems Applications and Services, June 2013, pp.461-462.Patra S, Arnanz J H, Calafate C T, Cano J C, Manzoni P. EYES: A novel overtaking assistance system for vehicular networks. In Proc. the 14th Int. Conf. Ad-Hoc Networks and Wireless, June 2015, pp.375-389.Togneri M C, Deriaz M. On-board navigation system for smartphones. In Proc. Int. Conf. Indoor Positioning and Indoor Navigation, October 2013.Dancu A, Franjcic Z, Fjeld M. Smart flashlight: Map navigation using a bike-mounted projector. In Proc. the SIGCHI Conf. Human Factors in Computing Systems, April 2014, pp.3627-3630.Yamabe T, Ikegami S, Ishizaki A, Kitagami S, Kiyohara R. Car navigation user interface based on a smartphone. In Proc. the 7th Int. Conf. Mobile Computing and Ubiquitous Networking, January 2014, pp.85-86.Matsuyama S, Yamabe T, Takahashi N, Kiyohara R. Intelligent user interface of smartphones for on-vehicle information devices. Procedia Computer Science, 2014, 35: 1635-1643.Kovacevic B, Kovacevic M, Maruna T, Papp I. A java application programming interface for in-vehicle infotainment devices. IEEE Trans. Consumer Electronics, 2017, 63(1): 68-76.Liu R L, Liu H Z, Kwak D, Xiang Y, Borcea C, Nath B, Iftode L. Themis: A participatory navigation system for balanced traffic routing. In Proc. IEEE Vehicular Networking Conf., December 2014, pp.159-166.Liu R L, Liu H Z, Kwak D, Xiang Y, Borcea C, Nath B, Iftode L. Balanced traffic routing: Design, implementation, and evaluation. Ad Hoc Networks, 2016, 37: 14-28.Vochin M, Zoican S, Borcoci E. Intelligent system for vehicle navigation assistance. In Proc. World Conf. Information Systems and Technologies, April 2017, pp.142-148.Sha W J, Kwak D, Nath B, Iftode L. Social vehicle navigation: Integrating shared driving experience into vehicle navigation. In Proc. the 14th Workshop on Mobile Computing Systems and Applications, February 2013, Article No. 16.Kwak D, Liu R L, Kim D, Nath B, Iftode L. Seeing is believing: Sharing real-time visual traffic information via vehicular clouds. IEEE Access, 2016, 4: 3617-3631.Djajadi A, Putra R J. Inter-cars safety communication system based on Android smartphone. In Proc. IEEE Conf. Open Systems, October 2014, pp.12-17.Dorairaj P, Mohammed A, Grbic N. Location-Aware services using Android mobile operating platform for safety, emergency and health applications. In Mobile Health, Adibi S (ed.), Springer, 2015, pp.283-298.Dorairaj P, Ramamoorthy S, Ramalingam A K. Emergency based remote collateral tracking system using Google’s Android mobile platform. In Advances in Computer Science Engineering & Applications, Wyld D C, Zizka J, Nagamalai D (eds.), Springer, 2012, pp.391-403.Zulkafi A Z, Basri S, Jung L T, Ahmad R. Android based car alert system. In Proc. the 3rd Int. Conf. Computer and Information Sciences, August 2016, pp.501-506.Tornell S M, Calafate C T, Cano J C, Manzoni P, Fogue M, Martinez F J. Evaluating the feasibility of using smartphones for ITS safety applications. In Proc. the 77th IEEE Vehicular Technology Conf., June 2013.Tornell S M, Patra S, Calafate C T, Cano J C, Manzoni P. GRCBox: Extending smartphone connectivity in vehicular networks. International Journal of Distributed Sensor Networks, 2015, 2015: Article No. 5.Mirkovic J, Dietrich S, Dittrich D, Reiher P. Internet Denial of Service: Attack and Defense Mechanisms (Radia Perlman Computer Networking and Security). Prentice Hall PTR, 2004.Chen S, Xu J, Sezer E C, Gauriar P, Iyer R K. Non-control-data attacks are realistic threats. In Proc. the 14th Conf. USENIX Security Symp., July 31-August 5, 2005.Fung C K, Lee M C. A denial-of-service resistant public-key authentication and key establishment protocol. In Proc. the 21st IEEE Int. Performance Computing and Communications Conf., April 2002, pp.171-178.Abadi M, Budiu M, Erlingsson Ú, Ligatti J. Control-flow integrity. In Proc. the 12th ACM Conf. Computer and Communications Security, November 2005, pp.340-353

    Study and application of the AVAS to electric vehicles for pedestrian safety

    Get PDF
    Aquest treball de fi de màster (TFM) està orientat a estudiar i analitzar un dels nous sistemes incorporats als vehicles elèctrics (EV) moderns, el SAAV, o sistema d'alerta acústica vehicular. Aquest sistema que s'obliga a incorporar-se als EV sota normativa des de l'any 2019 per a la seva circulació presenta diversos models de sons ja existents en cotxes del mercat actual. Tant la normativa com diferents models de sons SAAV són analitzats per entendre la situació actual d'aquesta tecnologia. En tractar de sons, el TFM descriu també informació teòrica base que estenc els coneixements sobre els elements acústics i la seva estructura. La substitució dels sons de propulsió vehicular que comporta l’augment de circulació d’EVs en lloc de vehicles de combustió interna (ICE) involucra una adaptació social. Per això, aquest treball busca descobrir quina és la percepció de les persones davant de diversos sons de SAAV d'EV de marques diferents. Mitjançant un Jury test realitzat a diversos estudiants es puntua diferents sons per revelar quins sons agraden més i quins fan una impressió insatisfeta. En apartats següents, s'analitzen aquests mateixos sons enquestats per establir correlacions entre els resultats obtinguts de percepció acústica i l'estructura de cada so, les freqüències, harmònics i sorolls. D'aquesta manera, es busca entendre que aspectes dels sons de SAAV són els que provoquen que siguin percebuts amb característiques més atractives que d'altres, i quins aspectes varien depenent de la categoria vehicular per a la qual va ser dissenyat el so. Finalment, aquest TFM involucra el desenvolupament i el disseny d'un model de so per al SAAV d'un vehicle en específic. Es detalla el que va comportar la producció d'aquest so de propulsió i també se'n fa l'anàlisi acústic. Aquesta secció addicional a l'enfocament principal del treball busca proporcionar una mica d'experiència més enllà del teòric i donar a saber com seria dur a terme un projecte similar a la vida realEl presente trabajo de fin de máster (TFM) está orientado a estudiar y analizar uno de los nuevos sistemas incorporados en los vehículos eléctricos (EV) modernos, el SAAV, o sistema de alerta acústica vehicular. Este sistema que se obliga a incorporarse en los EV bajo normativa desde el año 2019 para su circulación, presenta varios modelos de sonidos ya existentes en coches del mercado actual. Tanto la normativa, como distintos modelos de sonidos SAAV son analizados para entender la situación actual de esta tecnología. Al tratar de sonidos, el TFM describe también información teórica base que extiendo los conocimientos sobre los elementos acústicos y su estructura. La sustitución de los sonidos de propulsión vehicular que conlleva el aumento de circulación de EVs en lugar de vehículos de combustión interna (ICE) involucra una adaptación social. Por ello, este trabajo busca descubrir cual es la percepción de las personas ante varios sonidos de SAAV de EV de marcas diferentes. Mediante un Jury test realizado a varios estudiantes se puntúa distintos sonidos para revelar cuales sonidos agradan más y cuales dan una impresión insatisfecha. En apartados siguientes, se analizan estos mismos sonidos encuestados para establecer correlaciones entre los resultados obtenidos de percepción acústica y la estructura de cada sonido, sus frecuencias, harmónicos y ruidos. De esta forma, se busca entender que aspectos de los sonidos de SAAV son los que provocan que sean percibidos con características más atractivas que otras, y que aspectos varían dependiendo de la categoría vehicular para la cual fue diseño el sonido. Finalmente, este TFM involucra el desarrollo y diseño de un modelo de sonido para el SAAV de un vehículo en específico. Se detalla lo que conllevó la producción de este sonido de propulsión y también se realiza el análisis acústico del mismo. Esta sección adicional al enfoque principal del trabajo busca proporcionar un tanto de experiencia más allá de lo teórico y dar a saber como seria llevar a cabo un proyecto similar en la vida realhis master’s thesis (TFM) is oriented to study and analyze one of the new systems incorporated in modern electric vehicles (EV), the AVAS, or vehicle acoustic warning system. This system, which is required to be incorporated in EVs under regulations since 2019 for their circulation, presents several models of sounds already existing in cars in the current market. Both the regulations and different models of AVAS sounds are analyzed to understand the current situation of this technology. When dealing with sounds, the TFM also describes theoretical background information that extends the knowledge about acoustic elements and their structure. The substitution of vehicle propulsion sounds brought about by the increased circulation of EVs instead of internal combustion vehicles (ICE) involves a social adaptation. Therefore, this work seeks to discover what is the perception of people in front of several AVAS sounds of EVs of different brands. By means of a Jury test performed to several students, different sounds are scored to reveal which sounds are more pleasing and which ones give an unsatisfied impression. In the following sections, these same surveyed sounds are analyzed to establish correlations between the obtained results of acoustic perception and the structure of each sound, its frequencies, harmonics, and noises. In this way, we seek to understand which aspects of the AVAS sounds are the ones that cause them to be perceived with more attractive characteristics than others, and which aspects vary depending on the vehicle category for which the sound was designed. Finally, this TFM involves the development and design of a sound model for the SAAV of a specific vehicle. It details what was involved in the production of this propulsion sound and also performs the acoustic analysis of it. This section in addition to the main focus of the work seeks to provide some experience beyond the theoretical and let you know how it would be to carry out a similar project in real lif

    Architectures for embedded multimodal sensor data fusion systems in the robotics : and airport traffic suveillance ; domain

    Get PDF
    Smaller autonomous robots and embedded sensor data fusion systems often suffer from limited computational and hardware resources. Many ‘Real Time’ algorithms for multi modal sensor data fusion cannot be executed on such systems, at least not in real time and sometimes not at all, because of the computational and energy resources needed, resulting from the architecture of the computational hardware used in these systems. Alternative hardware architectures for generic tracking algorithms could provide a solution to overcome some of these limitations. For tracking and self localization sequential Bayesian filters, in particular particle filters, have been shown to be able to handle a range of tracking problems that could not be solved with other algorithms. But particle filters have some serious disadvantages when executed on serial computational architectures used in most systems. The potential increase in performance for particle filters is huge as many of the computational steps can be done concurrently. A generic hardware solution for particle filters can relieve the central processing unit from the computational load associated with the tracking task. The general topic of this research are hardware-software architectures for multi modal sensor data fusion in embedded systems in particular tracking, with the goal to develop a high performance computational architecture for embedded applications in robotics and airport traffic surveillance domain. The primary concern of the research is therefore: The integration of domain specific concept support into hardware architectures for low level multi modal sensor data fusion, in particular embedded systems for tracking with Bayesian filters; and a distributed hardware-software tracking systems for airport traffic surveillance and control systems. Runway Incursions are occurrences at an aerodrome involving the incorrect presence of an aircraft, vehicle, or person on the protected area of a surface designated for the landing and take-off of aircraft. The growing traffic volume kept runway incursions on the NTSB’s ‘Most Wanted’ list for safety improvements for over a decade. Recent incidents show that problem is still existent. Technological responses that have been deployed in significant numbers are ASDE-X and A-SMGCS. Although these technical responses are a significant improvement and reduce the frequency of runway incursions, some runway incursion scenarios are not optimally covered by these systems, detection of runway incursion events is not as fast as desired, and they are too expensive for all but the biggest airports. Local, short range sensors could be a solution to provide the necessary affordable surveillance accuracy for runway incursion prevention. In this context the following objectives shall be reached. 1) Show the feasibility of runway incursion prevention systems based on localized surveillance. 2) Develop a design for a local runway incursion alerting system. 3) Realize a prototype of the system design using the developed tracking hardware.Kleinere autonome Roboter und eingebettete Sensordatenfusionssysteme haben oft mit stark begrenzter Rechenkapazität und eingeschränkten Hardwareressourcen zu kämpfen. Viele Echtzeitalgorithmen für die Fusion von multimodalen Sensordaten können, bedingt durch den hohen Bedarf an Rechenkapazität und Energie, auf solchen Systemen überhaupt nicht ausgeführt werden, oder zu mindesten nicht in Echtzeit. Der hohe Bedarf an Energie und Rechenkapazität hat seine Ursache darin, dass die Architektur der ausführenden Hardware und der ausgeführte Algorithmus nicht aufeinander abgestimmt sind. Dies betrifft auch Algorithmen zu Spurverfolgung. Mit Hilfe von alternativen Hardwarearchitekturen für die generische Ausführung solcher Algorithmen könnten sich einige der typischerweise vorliegenden Einschränkungen überwinden lassen. Eine Reihe von Aufgaben, die sich mit anderen Spurverfolgungsalgorithmen nicht lösen lassen, lassen sich mit dem Teilchenfilter, einem Algorithmus aus der Familie der Bayesschen Filter lösen. Bei der Ausführung auf traditionellen Architekturen haben Teilchenfilter gegenüber anderen Algorithmen einen signifikanten Nachteil, allerdings ist hier ein großer Leistungszuwachs durch die nebenläufige Ausführung vieler Rechenschritte möglich. Eine generische Hardwarearchitektur für Teilchenfilter könnte deshalb die oben genannten Systeme stark entlasten. Das allgemeine Thema dieses Forschungsvorhabens sind Hardware-Software-Architekturen für die multimodale Sensordatenfusion auf eingebetteten Systemen - speziell für Aufgaben der Spurverfolgung, mit dem Ziel eine leistungsfähige Architektur für die Berechnung entsprechender Algorithmen auf eingebetteten Systemen zu entwickeln, die für Anwendungen in der Robotik und Verkehrsüberwachung auf Flughäfen geeignet ist. Das Augenmerk des Forschungsvorhabens liegt dabei auf der Integration von vom Einsatzgebiet abhängigen Konzepten in die Architektur von Systemen zur Spurverfolgung mit Bayeschen Filtern, sowie auf verteilten Hardware-Software Spurverfolgungssystemen zur Überwachung und Führung des Rollverkehrs auf Flughäfen. Eine „Runway Incursion“ (RI) ist ein Vorfall auf einem Flugplatz, bei dem ein Fahrzeug oder eine Person sich unerlaubt in einem Abschnitt der Start- bzw. Landebahn befindet, der einem Verkehrsteilnehmer zur Benutzung zugewiesen wurde. Der wachsende Flugverkehr hat dafür gesorgt, das RIs seit über einem Jahrzehnt auf der „Most Wanted“-Liste des NTSB für Verbesserungen der Sicherheit stehen. Jüngere Vorfälle zeigen, dass das Problem noch nicht behoben ist. Technologische Maßnahmen die in nennenswerter Zahl eingesetzt wurden sind das ASDE-X und das A-SMGCS. Obwohl diese Maßnahmen eine deutliche Verbesserung darstellen und die Zahl der RIs deutlich reduzieren, gibt es einige RISituationen die von diesen Systemen nicht optimal abgedeckt werden. Außerdem detektieren sie RIs ist nicht so schnell wie erwünscht und sind - außer für die größten Flughäfen - zu teuer. Lokale Sensoren mit kurzer Reichweite könnten eine Lösung sein um die für die zuverlässige Erkennung von RIs notwendige Präzision bei der Überwachung des Rollverkehrs zu erreichen. Vor diesem Hintergrund sollen die folgenden Ziele erreicht werden. 1) Die Machbarkeit eines Runway Incursion Vermeidungssystems, das auf lokalen Sensoren basiert, zeigen. 2) Einen umsetzbaren Entwurf für ein solches System entwickeln. 3) Einen Prototypen des Systems realisieren, das die oben gennannte Hardware zur Spurverfolgung einsetzt

    Vehicular Motion Sensor: Developing a Wide-Range Motion Sensing Alarm System

    Get PDF
    Vehicular safety has become a serious concern in recent years. Many drivers have difficulty backing out of parking spaces, especially when large trucks and sport utility vehicles block the peripheral view from smaller vehicles. This can lead to accidents and pedestrian injuries when drivers are unable to see or do not pay careful attention to their surroundings. Vehicular motion sensor systems can alert drivers of approaching obstacles when attempting to back out of parking spaces with limited visibility. This thesis aims to explain the limitations of current systems and the research conducted by the author to develop a prototype for an improved system based on ultrasonic and infrared motion sensing technologies that provides earlier obstacle detection over a larger area

    Detecting, tracking, and warning of traffic threats to police stopped along the roadside

    Get PDF
    Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (pages 65-66).Despite years of research into improving the safety of police roadside stops, reckless drivers continue to injure or kill police personnel stopped on the roadside at an alarming rate. We have proposed to reduce this problem through a "divert and alert" approach, projecting lasers onto the road surface as virtual flares to divert incoming vehicles, and alerting officers of dangerous incoming vehicles early enough to take life-saving evasive action. This thesis describes the initial development of the Officer Alerting Mechanism (OAM), which uses cameras to detect and track incoming vehicles, and calculates their real-world positions and trajectories. It presents a procedure for calibrating the camera software system with the laser, as well as a system that allows an officer to draw an arbitrary laser pattern on the screen that is then projected onto the road. Trajectories violating the "no-go" zone of the projected laser pattern are detected and the officer is accordingly alerted of a potentially dangerous vehicle.by James Karraker.M. Eng

    S.A.V.E. M.E.

    Get PDF
    S.A.V.E. M.E. stands for Submerged Automated Vehicular Elevation Minor Extraction or alternatively a Home Swimming Pool Rescue Device. The objective of this project is to design and prototype a system that will make unattended swimming pools through detecting a victim’s presence, deploying a means to save the victim, and alerting others nearby of the situation. This system encompasses sensors and devices within the pool and an alarm system outside of the pool. Upon detection of a sufficiently sized object entering the pool when the system is armed, a device will maneuver to the victim and deploy a flotation device that could assist or raise the drowning victim

    Implementation of a Hierarchical Embedded Cyber-Attack Detection System in Unmanned Aerial Systems

    Get PDF
    With the development of technology revolving around Unmanned Aerial Systems (UAS), UAS are becoming more widely used across a variety of applications. In every scenario, the system in question needs to have very distinct requirements and specifications, many of which revolve around safety and reliability. As such, these systems need to provide mechanisms in order to handle different attacks by adversaries on the outside. Since these systems have the ability to operate in many different flight modes according to their mission, detection and mitigation of the attacks become increasingly difficult over time. Cyber-attacks and their focuses are often evolving, and as a result, existing mitigation solutions slowly become obsolete. Many solutions that exist involve an intrusive solution or embedded software, which provide another attack surface for adversaries to and gain entry. Here, a hierarchical embedded cyber-attack detection system is explored and implemented, providing different methodologies and strategies for handling both cyber-attacks and hardware faults and failures on a hardware and information level
    corecore