69,068 research outputs found

    Towards co-designed optimizations in parallel frameworks: A MapReduce case study

    Full text link
    The explosion of Big Data was followed by the proliferation of numerous complex parallel software stacks whose aim is to tackle the challenges of data deluge. A drawback of a such multi-layered hierarchical deployment is the inability to maintain and delegate vital semantic information between layers in the stack. Software abstractions increase the semantic distance between an application and its generated code. However, parallel software frameworks contain inherent semantic information that general purpose compilers are not designed to exploit. This paper presents a case study demonstrating how the specific semantic information of the MapReduce paradigm can be exploited on multicore architectures. MR4J has been implemented in Java and evaluated against hand-optimized C and C++ equivalents. The initial observed results led to the design of a semantically aware optimizer that runs automatically without requiring modification to application code. The optimizer is able to speedup the execution time of MR4J by up to 2.0x. The introduced optimization not only improves the performance of the generated code, during the map phase, but also reduces the pressure on the garbage collector. This demonstrates how semantic information can be harnessed without sacrificing sound software engineering practices when using parallel software frameworks.Comment: 8 page

    Automating embedded analysis capabilities and managing software complexity in multiphysics simulation part I: template-based generic programming

    Full text link
    An approach for incorporating embedded simulation and analysis capabilities in complex simulation codes through template-based generic programming is presented. This approach relies on templating and operator overloading within the C++ language to transform a given calculation into one that can compute a variety of additional quantities that are necessary for many state-of-the-art simulation and analysis algorithms. An approach for incorporating these ideas into complex simulation codes through general graph-based assembly is also presented. These ideas have been implemented within a set of packages in the Trilinos framework and are demonstrated on a simple problem from chemical engineering
    • …
    corecore