775 research outputs found

    Computationally intensive Value at Risk calculations

    Get PDF
    Market risks are the prospect of financial losses- or gains- due to unexpected changes in market prices and rates. Evaluating the exposure to such risks is nowadays of primary concern to risk managers in financial and non-financial institutions alike. Until late 1980s market risks were estimated through gap and duration analysis (interest rates), portfolio theory (securities), sensitivity analysis (derivatives) or "what-if" scenarios. However, all these methods either could be applied only to very specific assets or relied on subjective reasoning. --

    Heavy-tailed distributions in VaR calculations

    Get PDF
    The essence of the Value-at-Risk (VaR) and Expected Shortfall (ES) computations is estimation of low quantiles in the portfolio return distributions. Hence, the performance of market risk measurement methods depends on the quality of distributional assumptions on the underlying risk factors. This chapter is intended as a guide to heavy-tailed models for VaR-type calculations. We first describe stable laws and their lighter-tailed generalizations, the so-called truncated and tempered stable distributions. Next we study the class of generalized hyperbolic laws, which – like tempered stable distributions – can be classified somewhere between infinite variance stable laws and the Gaussian distribution. Then we discuss copulas, which enable us to construct a multivariate distribution function from the marginal (possibly different) distribution functions of n individual asset returns in a way that takes their dependence structure into account. This dependence structure may be no longer measured by correlation, but by other adequate functions like rank correlation, comonotonicity or tail dependence. Finally, we provide numerical examples.Heavy-tailed distribution; Stable distribution; Tempered stable distribution; Generalized hyperbolic distribution; Parameter estimation; Value-at-Risk (VaR); Expected Shortfall (ES); Copula; Filtered historical simulation (FHS);

    Models for Heavy-tailed Asset Returns

    Get PDF
    Many of the concepts in theoretical and empirical finance developed over the past decades – including the classical portfolio theory, the Black-Scholes-Merton option pricing model or the RiskMetrics variance-covariance approach to VaR – rest upon the assumption that asset returns follow a normal distribution. But this assumption is not justified by empirical data! Rather, the empirical observations exhibit excess kurtosis, more colloquially known as fat tails or heavy tails. This chapter is intended as a guide to heavy-tailed models. We first describe the historically oldest heavy-tailed model – the stable laws. Next, we briefly characterize their recent lighter-tailed generalizations, the so-called truncated and tempered stable distributions. Then we study the class of generalized hyperbolic laws, which – like tempered stable distributions – can be classified somewhere between infinite variance stable laws and the Gaussian distribution. Finally, we provide numerical examples.Heavy-tailed distribution; Stable distribution; Tempered stable distribution; Generalized hyperbolic distribution; Asset return; Random number generation; Parameter estimation

    Models for Heavy-tailed Asset Returns

    Get PDF
    Many of the concepts in theoretical and empirical finance developed over the past decades – including the classical portfolio theory, the Black-Scholes-Merton option pricing model or the RiskMetrics variance-covariance approach to VaR – rest upon the assumption that asset returns follow a normal distribution. But this assumption is not justified by empirical data! Rather, the empirical observations exhibit excess kurtosis, more colloquially known as fat tails or heavy tails. This chapter is intended as a guide to heavy-tailed models. We first describe the historically oldest heavy-tailed model – the stable laws. Next, we briefly characterize their recent lighter-tailed generalizations, the socalled truncated and tempered stable distributions. Then we study the class of generalized hyperbolic laws, which – like tempered stable distributions – can be classified somewhere between infinite variance stable laws and the Gaussian distribution. Finally, we provide numerical examples.Heavy-tailed distribution; Stable distribution; Tempered stable distribution; Generalized hyperbolic distribution; Asset return; Random number generation; Parameter estimation;

    Models for Heavy-tailed Asset Returns

    Get PDF
    Many of the concepts in theoretical and empirical finance developed over the past decades – including the classical portfolio theory, the Black- Scholes-Merton option pricing model or the RiskMetrics variance-covariance approach to VaR – rest upon the assumption that asset returns follow a normal distribution. But this assumption is not justified by empirical data! Rather, the empirical observations exhibit excess kurtosis, more colloquially known as fat tails or heavy tails. This chapter is intended as a guide to heavy-tailed models. We first describe the historically oldest heavy-tailed model – the stable laws. Next, we briefly characterize their recent lighter-tailed generalizations, the socalled truncated and tempered stable distributions. Then we study the class of generalized hyperbolic laws, which – like tempered stable distributions – can be classified somewhere between infinite variance stable laws and the Gaussian distribution. Finally, we provide numerical examples.Heavy-tailed distribution; Stable distribution; Tempered stable distribution; Generalized hyperbolic distribution; Asset return; Random number generation; Parameter estimation
    corecore