123,682 research outputs found

    Automated Generation of Non-Linear Loop Invariants Utilizing Hypergeometric Sequences

    Full text link
    Analyzing and reasoning about safety properties of software systems becomes an especially challenging task for programs with complex flow and, in particular, with loops or recursion. For such programs one needs additional information, for example in the form of loop invariants, expressing properties to hold at intermediate program points. In this paper we study program loops with non-trivial arithmetic, implementing addition and multiplication among numeric program variables. We present a new approach for automatically generating all polynomial invariants of a class of such programs. Our approach turns programs into linear ordinary recurrence equations and computes closed form solutions of these equations. These closed forms express the most precise inductive property, and hence invariant. We apply Gr\"obner basis computation to obtain a basis of the polynomial invariant ideal, yielding thus a finite representation of all polynomial invariants. Our work significantly extends the class of so-called P-solvable loops by handling multiplication with the loop counter variable. We implemented our method in the Mathematica package Aligator and showcase the practical use of our approach.Comment: A revised version of this paper is published in the proceedings of ISSAC 201

    Merging Techniques for Faster Derivation of WCET Flow Information using Abstract Execution

    Get PDF
    Static Worst-Case Execution Time (WCET) analysis derives upper bounds for the execution times of programs. Such bounds are crucial when designing and verifying real-time systems. A key component in static WCET analysis is to derive flow information, such as loop bounds and infeasible paths. We have previously introduced abstract execution (AE), a method capable of deriving very precise flow information. This paper present different merging techniques that can be used by AE for trading analysis time for flow information precision. It also presents a new technique, ordered merging, which may radically shorten AE analysis times, especially when analyzing large programs with many possible input variable values

    Recursive tree traversal dependence analysis

    Get PDF
    While there has been much work done on analyzing and transforming regular programs that operate over linear arrays and dense matrices, comparatively little has been done to try to carry these optimizations over to programs that operate over heap-based data structures using pointers. Previous work has shown that point blocking, a technique similar to loop tiling in regular programs, can help increase the temporal locality of repeated tree traversals. Point blocking, however, has only been shown to work on tree traversals where each traversal is fully independent and would allow parallelization, greatly limiting the types of applications that this transformation could be applied to.^ The purpose of this study is to develop a new framework for analyzing recursive methods that perform traversals over trees, called tree dependence analysis. This analysis translates dependence analysis techniques for regular programs to the irregular space, identifying the structure of dependences within a recursive method that traverses trees. In this study, a dependence test that exploits the dependence structure of such programs is developed, and is shown to be able to prove the legality of several locality— and parallelism-enhancing transformations, including point blocking. In addition, the analysis is extended with a novel path-dependent, conditional analysis to refine the dependence test and prove the legality of transformations for a wider range of algorithms. These analyses are then used to show that several common algorithms that manipulate trees recursively are amenable to several locality— and parallelism-enhancing transformations. This work shows that classical dependence analysis techniques, which have largely been confined to nested loops over array data structures, can be extended and translated to work for complex, recursive programs that operate over pointer-based data structures

    A systematic approach for improving predicted arrival time using historical data in absence of schedule reliability

    Get PDF
    Public transit operations are susceptible to change, both in traffic flow and other conditions that could affect operations such as bridge openings, road floods, and torrential downpours. Traditionally, riders at waiting stops are not informed of the transit vehicles’ status along the route. Although it is normally not needed for daily transit operations, live location information is particularly useful in cases when vehicles are running behind schedule. This thesis introduces a method for gathering and analyzing historical location and telemetry data of public transit vehicles to better determine estimated arrival time for a vehicle on a closed-loop public transit pattern. The research creates a system for sending real-time locations of transit vehicles to riders through a wide array of mediums including web pages, computer programs, graphical information displays in public locations, mobile phone applications, mobile text messaging, and internet feeds. The system incorporates a weighted estimated arrival time for one route in the city, the University of North Carolina Wilmington campus loop shuttle route, which serves as a working demonstration of these concepts. The approach shows improvement over an arrival time estimate using only average speed

    Bounded Expectations: Resource Analysis for Probabilistic Programs

    Full text link
    This paper presents a new static analysis for deriving upper bounds on the expected resource consumption of probabilistic programs. The analysis is fully automatic and derives symbolic bounds that are multivariate polynomials of the inputs. The new technique combines manual state-of-the-art reasoning techniques for probabilistic programs with an effective method for automatic resource-bound analysis of deterministic programs. It can be seen as both, an extension of automatic amortized resource analysis (AARA) to probabilistic programs and an automation of manual reasoning for probabilistic programs that is based on weakest preconditions. As a result, bound inference can be reduced to off-the-shelf LP solving in many cases and automatically-derived bounds can be interactively extended with standard program logics if the automation fails. Building on existing work, the soundness of the analysis is proved with respect to an operational semantics that is based on Markov decision processes. The effectiveness of the technique is demonstrated with a prototype implementation that is used to automatically analyze 39 challenging probabilistic programs and randomized algorithms. Experimental results indicate that the derived constant factors in the bounds are very precise and even optimal for many programs

    Analyzing Conflict Freedom For Multi-threaded Programs With Time Annotations

    Get PDF
    Avoiding access conflicts is a major challenge in the design of multi-threaded programs. In the context of real-time systems, the absence of conflicts can be guaranteed by ensuring that no two potentially conflicting accesses are ever scheduled concurrently.In this paper, we analyze programs that carry time annotations specifying the time for executing each statement. We propose a technique for verifying that a multi-threaded program with time annotations is free of access conflicts. In particular, we generate constraints that reflect the possible schedules for executing the program and the required properties. We then invoke an SMT solver in order to verify that no execution gives rise to concurrent conflicting accesses. Otherwise, we obtain a trace that exhibits the access conflict.Comment: http://journal.ub.tu-berlin.de/eceasst/article/view/97

    A Model-Derivation Framework for Software Analysis

    Full text link
    Model-based verification allows to express behavioral correctness conditions like the validity of execution states, boundaries of variables or timing at a high level of abstraction and affirm that they are satisfied by a software system. However, this requires expressive models which are difficult and cumbersome to create and maintain by hand. This paper presents a framework that automatically derives behavioral models from real-sized Java programs. Our framework builds on the EMF/ECore technology and provides a tool that creates an initial model from Java bytecode, as well as a series of transformations that simplify the model and eventually output a timed-automata model that can be processed by a model checker such as UPPAAL. The framework has the following properties: (1) consistency of models with software, (2) extensibility of the model derivation process, (3) scalability and (4) expressiveness of models. We report several case studies to validate how our framework satisfies these properties.Comment: In Proceedings MARS 2017, arXiv:1703.0581
    • …
    corecore