13,414 research outputs found

    Graph Neural Networks for Particle Reconstruction in High Energy Physics detectors

    Full text link
    Pattern recognition problems in high energy physics are notably different from traditional machine learning applications in computer vision. Reconstruction algorithms identify and measure the kinematic properties of particles produced in high energy collisions and recorded with complex detector systems. Two critical applications are the reconstruction of charged particle trajectories in tracking detectors and the reconstruction of particle showers in calorimeters. These two problems have unique challenges and characteristics, but both have high dimensionality, high degree of sparsity, and complex geometric layouts. Graph Neural Networks (GNNs) are a relatively new class of deep learning architectures which can deal with such data effectively, allowing scientists to incorporate domain knowledge in a graph structure and learn powerful representations leveraging that structure to identify patterns of interest. In this work we demonstrate the applicability of GNNs to these two diverse particle reconstruction problems.Comment: Presented at NeurIPS 2019 Workshop "Machine Learning and the Physical Sciences

    Graph Neural Networks for Particle Reconstruction in High Energy Physics detectors

    Get PDF
    Pattern recognition problems in high energy physics are notably different from traditional machine learning applications in computer vision. Reconstruction algorithms identify and measure the kinematic properties of particles produced in high energy collisions and recorded with complex detector systems. Two critical applications are the reconstruction of charged particle trajectories in tracking detectors and the reconstruction of particle showers in calorimeters. These two problems have unique challenges and characteristics, but both have high dimensionality, high degree of sparsity, and complex geometric layouts. Graph Neural Networks (GNNs) are a relatively new class of deep learning architectures which can deal with such data effectively, allowing scientists to incorporate domain knowledge in a graph structure and learn powerful representations leveraging that structure to identify patterns of interest. In this work we demonstrate the applicability of GNNs to these two diverse particle reconstruction problems

    Accelerating exhaustive pairwise metagenomic comparisons

    Get PDF
    In this manuscript, we present an optimized and parallel version of our previous work IMSAME, an exhaustive gapped aligner for the pairwise and accurate comparison of metagenomes. Parallelization strategies are applied to take advantage of modern multiprocessor architectures. In addition, sequential optimizations in CPU time and memory consumption are provided. These algorithmic and computational enhancements enable IMSAME to calculate near optimal alignments which are used to directly assess similarity between metagenomes without requiring reference databases. We show that the overall efficiency of the parallel implementation is superior to 80% while retaining scalability as the number of parallel cores used increases. Moreover, we also show thats equential optimizations yield up to 8x speedup for scenarios with larger data.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Optimizing momentum resolution with a new fitting method for silicon-strip detectors

    Full text link
    A new fitting method is explored for momentum reconstruction of tracks in a constant magnetic field for a silicon-strip tracker. Substantial increases of momentum resolution respect to standard fit is obtained. The key point is the use of a realistic probability distribution for each hit (heteroscedasticity). Two different methods are used for the fits, the first method introduces an effective variance for each hit, the second method implements the maximum likelihood search. The tracker model is similar to the PAMELA tracker. Each side, of the two sided of the PAMELA detectors, is simulated as momentum reconstruction device. One of the two is similar to silicon micro-strip detectors of large use in running experiments. Two different position reconstructions are used for the standard fits, the η\eta-algorithm (the best one) and the two-strip center of gravity. The gain obtained in momentum resolution is measured as the virtual magnetic field and the virtual signal-to-noise ratio required by the two standard fits to reach an overlap with the best of two new methods. For the best side, the virtual magnetic field must be increased 1.5 times respect to the real field to reach the overlap and 1.8 for the other. For the high noise side, the increases must be 1.8 and 2.0. The signal-to-noise ratio has similar increases but only for the η\eta-algorithm. The signal-to-noise ratio has no effect on the fits with the center of gravity. Very important results are obtained if the number N of detecting layers is increased, our methods provide a momentum resolution growing linearly with N, much higher than standard fits that grow as the N\sqrt{N}.Comment: This article supersedes arXiv:1606.03051, 22 pages and 10 figure
    • …
    corecore