27 research outputs found

    Towards a multipurpose neural network approach to novelty detection

    Get PDF
    Novelty detection, the identification of data that is unusual or different in some way, is relevant in a wide number of real-world scenarios, ranging from identifying unusual weather conditions to detecting evidence of damage in mechanical systems. However, utilising novelty detection approaches in a particular scenario presents significant challenges to the non-expert user. They must first select an appropriate approach from the novelty detection literature for their scenario. Then, suitable values must be determined for any parameters of the chosen approach. These challenges are at best time consuming and at worst prohibitively difficult for the user. Worse still, if no suitable approach can be found from the literature, then the user is left with the impossible task of designing a novelty detector themselves. In order to make novelty detection more accessible, an approach is required which does not pose the above challenges. This thesis presents such an approach, which aims to automatically construct novelty detectors for specific applications. The approach combines a neural network model, recently proposed to explain a phenomenon observed in the neural pathways of the retina, with an evolutionary algorithm that is capable of simultaneously evolving the structure and weights of a neural network in order to optimise its performance in a particular task. The proposed approach was evaluated over a number of very different novelty detection tasks. It was found that, in each task, the approach successfully evolved novelty detectors which outperformed a number of existing techniques from the literature. A number of drawbacks with the approach were also identified, and suggestions were given on ways in which these may potentially be overcome

    Towards a multipurpose neural network approach to novelty detection

    Get PDF
    Novelty detection, the identification of data that is unusual or different in some way, is relevant in a wide number of real-world scenarios, ranging from identifying unusual weather conditions to detecting evidence of damage in mechanical systems. However, utilising novelty detection approaches in a particular scenario presents significant challenges to the non-expert user. They must first select an appropriate approach from the novelty detection literature for their scenario. Then, suitable values must be determined for any parameters of the chosen approach. These challenges are at best time consuming and at worst prohibitively difficult for the user. Worse still, if no suitable approach can be found from the literature, then the user is left with the impossible task of designing a novelty detector themselves. In order to make novelty detection more accessible, an approach is required which does not pose the above challenges. This thesis presents such an approach, which aims to automatically construct novelty detectors for specific applications. The approach combines a neural network model, recently proposed to explain a phenomenon observed in the neural pathways of the retina, with an evolutionary algorithm that is capable of simultaneously evolving the structure and weights of a neural network in order to optimise its performance in a particular task. The proposed approach was evaluated over a number of very different novelty detection tasks. It was found that, in each task, the approach successfully evolved novelty detectors which outperformed a number of existing techniques from the literature. A number of drawbacks with the approach were also identified, and suggestions were given on ways in which these may potentially be overcome.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A Predictive Model for Guillain-Barré Syndrome Based on Single Learning Algorithms

    Get PDF
    Background. Guillain-Barré Syndrome (GBS) is a potentially fatal autoimmune neurological disorder. The severity varies among the four main subtypes, named as Acute Inflammatory Demyelinating Polyneuropathy (AIDP), Acute Motor Axonal Neuropathy (AMAN), Acute Motor Sensory Axonal Neuropathy (AMSAN), and Miller-Fisher Syndrome (MF). A proper subtype identification may help to promptly carry out adequate treatment in patients. Method. We perform experiments with 15 single classifiers in two scenarios: four subtypes’ classification and One versus All (OvA) classification. We used a dataset with the 16 relevant features identified in a previous phase. Performance evaluation is made by 10-fold cross validation (10-FCV). Typical classification performance measures are used. A statistical test is conducted in order to identify the top five classifiers for each case. Results. In four GBS subtypes’ classification, half of the classifiers investigated in this study obtained an average accuracy above 0.90. In OvA classification, the two subtypes with the largest number of instances resulted in the best classification results. Conclusions. This study represents a comprehensive effort on creating a predictive model for Guillain-Barré Syndrome subtypes. Also, the analysis performed in this work provides insight about the best single classifiers for each classification case

    Towards a multipurpose neural network approach to novelty detection

    Get PDF
    Novelty detection, the identification of data that is unusual or different in some way, is relevant in a wide number of real-world scenarios, ranging from identifying unusual weather conditions to detecting evidence of damage in mechanical systems. However, utilising novelty detection approaches in a particular scenario presents significant challenges to the non-expert user. They must first select an appropriate approach from the novelty detection literature for their scenario. Then, suitable values must be determined for any parameters of the chosen approach. These challenges are at best time consuming and at worst prohibitively difficult for the user. Worse still, if no suitable approach can be found from the literature, then the user is left with the impossible task of designing a novelty detector themselves. In order to make novelty detection more accessible, an approach is required which does not pose the above challenges. This thesis presents such an approach, which aims to automatically construct novelty detectors for specific applications. The approach combines a neural network model, recently proposed to explain a phenomenon observed in the neural pathways of the retina, with an evolutionary algorithm that is capable of simultaneously evolving the structure and weights of a neural network in order to optimise its performance in a particular task. The proposed approach was evaluated over a number of very different novelty detection tasks. It was found that, in each task, the approach successfully evolved novelty detectors which outperformed a number of existing techniques from the literature. A number of drawbacks with the approach were also identified, and suggestions were given on ways in which these may potentially be overcome

    Proposal of an adaptive infotainment system depending on driving scenario complexity

    Get PDF
    Tesi en modalitat Doctorat industrialPla de Doctorat industrial de la Generalitat de CatalunyaThe PhD research project is framed within the plan of industrial doctorates of the “Generalitat de Catalunya”. During the investigation, most of the work was carried out at the facilities of the vehicle manufacturer SEAT, specifically at the information and entertainment (infotainment) department. In the same way, there was a continuous cooperation with the telematics department of the UPC. The main objective of the project consisted in the design and validation of an adaptive infotainment system dependent on the driving complexity. The system was created with the purpose of increasing driver’ experience while guaranteeing a proper level of road safety. Given the increasing number of application and services available in current infotainment systems, it becomes necessary to devise a system capable of balancing these two counterparts. The most relevant parameters that can be used for balancing these metrics while driving are: type of services offered, interfaces available for interacting with the services, the complexity of driving and the profile of the driver. The present study can be divided into two main development phases, each phase had as outcome a real physical block that came to be part of the final system. The final system was integrated in a vehicle and validated in real driving conditions. The first phase consisted in the creation of a model capable of estimating the driving complexity based on a set of variables related to driving. The model was built by employing machine learning methods and the dataset necessary to create it was collected from several driving routes carried out by different participants. This phase allowed to create a model capable of estimating, with a satisfactory accuracy, the complexity of the road using easily extractable variables in any modern vehicle. This approach simplify the implementation of this algorithm in current vehicles. The second phase consisted in the classification of a set of principles that allow the design of the adaptive infotainment system based on the complexity of the road. These principles are defined based on previous researches undertaken in the field of usability and user experience of graphical interfaces. According to these of principles, a real adaptive infotainment system with the most commonly used functionalities; navigation, radio and media was designed and integrated in a real vehicle. The developed system was able to adapt the presentation of the content according to the estimation of the driving complexity given by the block developed in phase one. The adaptive system was validated in real driving scenarios by several participants and results showed a high level of acceptance and satisfaction towards this adaptive infotainment. As a starting point for future research, a proof of concept was carried out to integrate new interfaces into a vehicle. The interface used as reference was a Head Mounted screen that offered redundant information in relation to the instrument cluster. Tests with participants served to understand how users perceive the introduction of new technologies and how objective benefits could be blurred by initial biases.El proyecto de investigación de doctorado se enmarca dentro del plan de doctorados industriales de la Generalitat de Catalunya. Durante la investigación, la mayor parte del trabajo se llevó a cabo en las instalaciones del fabricante de vehículos SEAT, específicamente en el departamento de información y entretenimiento (infotainment). Del mismo modo, hubo una cooperación continua con el departamento de telemática de la UPC. El objetivo principal del proyecto consistió en el diseño y la validación de un sistema de información y entretenimiento adaptativo que se ajustaba de acuerdo a la complejidad de la conducción. El sistema fue creado con el propósito de aumentar la experiencia del conductor y garantizar un nivel adecuado en la seguridad vial. El proyecto surge dado el número creciente de aplicaciones y servicios disponibles en los sistemas actuales de información y entretenimiento; es por ello que se hace necesario contar con un sistema capaz de equilibrar estas dos contrapartes. Los parámetros más relevantes que se pueden usar para equilibrar estas métricas durante la conducción son: el tipo de servicios ofrecidos, las interfaces disponibles para interactuar con los servicios, la complejidad de la conducción y el perfil del conductor. El presente estudio se puede dividir en dos fases principales de desarrollo, cada fase tuvo como resultado un componente que se convirtió en parte del sistema final. El sistema final fue integrado en un vehículo y validado en condiciones reales de conducción. La primera fase consistió en la creación de un modelo capaz de estimar la complejidad de la conducción en base a un conjunto de variables relacionadas con la conducción. El modelo se construyó empleando "Machine Learning Methods" y el conjunto de datos necesario para crearlo se recopiló a partir de varias rutas de conducción realizadas por diferentes participantes. Esta fase permitió crear un modelo capaz de estimar, con una precisión satisfactoria, la complejidad de la carretera utilizando variables fácilmente extraíbles en cualquier vehículo moderno. Este enfoque simplifica la implementación de este algoritmo en los vehículos actuales. La segunda fase consistió en la clasificación de un conjunto de principios que permiten el diseño del sistema de información y entretenimiento adaptativo basado en la complejidad de la carretera. Estos principios se definen en base a investigaciones anteriores realizadas en el campo de usabilidad y experiencia del usuario con interfaces gráficas. De acuerdo con estos principios, un sistema de entretenimiento y entretenimiento real integrando las funcionalidades más utilizadas; navegación, radio y audio fue diseñado e integrado en un vehículo real. El sistema desarrollado pudo adaptar la presentación del contenido según la estimación de la complejidad de conducción dada por el bloque desarrollado en la primera fase. El sistema adaptativo fue validado en escenarios de conducción reales por varios participantes y los resultados mostraron un alto nivel de aceptación y satisfacción hacia este entretenimiento informativo adaptativo. Como punto de partida para futuras investigaciones, se llevó a cabo una prueba de concepto para integrar nuevas interfaces en un vehículo. La interfaz utilizada como referencia era una pantalla a la altura de los ojos (Head Mounted Display) que ofrecía información redundante en relación con el grupo de instrumentos. Las pruebas con los participantes sirvieron para comprender cómo perciben los usuarios la introducción de nuevas tecnologías y cómo los sesgos iniciales podrían difuminar los beneficios.Postprint (published version

    Novel Art-Based Neural Network Models For Pattern Classification, Rule Extraction And Data Regression

    Get PDF
    This thesis is concerned with the development of novel neural network models for tackling pattern classification, rule extraction, and data regression problems. The research focuses on one of the advanced features of neural networks, i.e., the incremental learning ability. This ability relates to continuous learning of new knowledge without disturbing the existing knowledge base and without re-iterating through the training samples. The Adaptive Resonance Theory (ART) and Generalized Regression Neural Network (GRNN) models are employed as the backbone in this research

    Proposal of an adaptive infotainment system depending on driving scenario complexity

    Get PDF
    The PhD research project is framed within the plan of industrial doctorates of the “Generalitat de Catalunya”. During the investigation, most of the work was carried out at the facilities of the vehicle manufacturer SEAT, specifically at the information and entertainment (infotainment) department. In the same way, there was a continuous cooperation with the telematics department of the UPC. The main objective of the project consisted in the design and validation of an adaptive infotainment system dependent on the driving complexity. The system was created with the purpose of increasing driver’ experience while guaranteeing a proper level of road safety. Given the increasing number of application and services available in current infotainment systems, it becomes necessary to devise a system capable of balancing these two counterparts. The most relevant parameters that can be used for balancing these metrics while driving are: type of services offered, interfaces available for interacting with the services, the complexity of driving and the profile of the driver. The present study can be divided into two main development phases, each phase had as outcome a real physical block that came to be part of the final system. The final system was integrated in a vehicle and validated in real driving conditions. The first phase consisted in the creation of a model capable of estimating the driving complexity based on a set of variables related to driving. The model was built by employing machine learning methods and the dataset necessary to create it was collected from several driving routes carried out by different participants. This phase allowed to create a model capable of estimating, with a satisfactory accuracy, the complexity of the road using easily extractable variables in any modern vehicle. This approach simplify the implementation of this algorithm in current vehicles. The second phase consisted in the classification of a set of principles that allow the design of the adaptive infotainment system based on the complexity of the road. These principles are defined based on previous researches undertaken in the field of usability and user experience of graphical interfaces. According to these of principles, a real adaptive infotainment system with the most commonly used functionalities; navigation, radio and media was designed and integrated in a real vehicle. The developed system was able to adapt the presentation of the content according to the estimation of the driving complexity given by the block developed in phase one. The adaptive system was validated in real driving scenarios by several participants and results showed a high level of acceptance and satisfaction towards this adaptive infotainment. As a starting point for future research, a proof of concept was carried out to integrate new interfaces into a vehicle. The interface used as reference was a Head Mounted screen that offered redundant information in relation to the instrument cluster. Tests with participants served to understand how users perceive the introduction of new technologies and how objective benefits could be blurred by initial biases.El proyecto de investigación de doctorado se enmarca dentro del plan de doctorados industriales de la Generalitat de Catalunya. Durante la investigación, la mayor parte del trabajo se llevó a cabo en las instalaciones del fabricante de vehículos SEAT, específicamente en el departamento de información y entretenimiento (infotainment). Del mismo modo, hubo una cooperación continua con el departamento de telemática de la UPC. El objetivo principal del proyecto consistió en el diseño y la validación de un sistema de información y entretenimiento adaptativo que se ajustaba de acuerdo a la complejidad de la conducción. El sistema fue creado con el propósito de aumentar la experiencia del conductor y garantizar un nivel adecuado en la seguridad vial. El proyecto surge dado el número creciente de aplicaciones y servicios disponibles en los sistemas actuales de información y entretenimiento; es por ello que se hace necesario contar con un sistema capaz de equilibrar estas dos contrapartes. Los parámetros más relevantes que se pueden usar para equilibrar estas métricas durante la conducción son: el tipo de servicios ofrecidos, las interfaces disponibles para interactuar con los servicios, la complejidad de la conducción y el perfil del conductor. El presente estudio se puede dividir en dos fases principales de desarrollo, cada fase tuvo como resultado un componente que se convirtió en parte del sistema final. El sistema final fue integrado en un vehículo y validado en condiciones reales de conducción. La primera fase consistió en la creación de un modelo capaz de estimar la complejidad de la conducción en base a un conjunto de variables relacionadas con la conducción. El modelo se construyó empleando "Machine Learning Methods" y el conjunto de datos necesario para crearlo se recopiló a partir de varias rutas de conducción realizadas por diferentes participantes. Esta fase permitió crear un modelo capaz de estimar, con una precisión satisfactoria, la complejidad de la carretera utilizando variables fácilmente extraíbles en cualquier vehículo moderno. Este enfoque simplifica la implementación de este algoritmo en los vehículos actuales. La segunda fase consistió en la clasificación de un conjunto de principios que permiten el diseño del sistema de información y entretenimiento adaptativo basado en la complejidad de la carretera. Estos principios se definen en base a investigaciones anteriores realizadas en el campo de usabilidad y experiencia del usuario con interfaces gráficas. De acuerdo con estos principios, un sistema de entretenimiento y entretenimiento real integrando las funcionalidades más utilizadas; navegación, radio y audio fue diseñado e integrado en un vehículo real. El sistema desarrollado pudo adaptar la presentación del contenido según la estimación de la complejidad de conducción dada por el bloque desarrollado en la primera fase. El sistema adaptativo fue validado en escenarios de conducción reales por varios participantes y los resultados mostraron un alto nivel de aceptación y satisfacción hacia este entretenimiento informativo adaptativo. Como punto de partida para futuras investigaciones, se llevó a cabo una prueba de concepto para integrar nuevas interfaces en un vehículo. La interfaz utilizada como referencia era una pantalla a la altura de los ojos (Head Mounted Display) que ofrecía información redundante en relación con el grupo de instrumentos. Las pruebas con los participantes sirvieron para comprender cómo perciben los usuarios la introducción de nuevas tecnologías y cómo los sesgos iniciales podrían difuminar los beneficios

    Revisiting probabilistic neural networks: a comparative study with support vector machines and the microhabitat suitability for the Eastern Iberian chub (Squalius valentinus)

    Full text link
    [EN] Probabilistic Neural Networks (PNNs) and Support Vector Machines (SVMs) are flexible classification techniques suited to render trustworthy species distribution and habitat suitability models. Although several alternatives to improve PNNs¿ reliability and performance and/or to reduce computational costs exist, PNNs are currently not well recognised as SVMs because the SVMs were compared with standard PNNs. To rule out this idea, the microhabitat suitability for the Eastern Iberian chub (Squalius valentinus Doadrio & Carmona, 2006) was modelled with SVMs and four types of PNNs (homoscedastic, heteroscedastic, cluster and enhanced PNNs); all of them optimised with differential evolution. The fitness function and several performance criteria (correctly classified instances, true skill statistic, specificity and sensitivity) and partial dependence plots were used to assess respectively the performance and reliability of each habitat suitability model. Heteroscedastic and enhanced PNNs achieved the highest performance in every index but specificity. However, these two PNNs rendered ecologically unreliable partial dependence plots. Conversely, homoscedastic and cluster PNNs rendered ecologically reliable partial dependence plots. Thus, Eastern Iberian chub proved to be a eurytopic species, presenting the highest suitability in microhabitats with cover present, low flow velocity (approx. 0.3 m/s), intermediate depth (approx. 0.6 m) and fine gravel (64¿256 mm). PNNs outperformed SVMs; thus, based on the results of the cluster PNN, which also showed high values of the performance criteria, we would advocate a combination of approaches (e.g., cluster & heteroscedastic or cluster & enhanced PNNs) to balance the trade-off between accuracy and reliability of habitat suitability models.The study has been partially funded by the national Research project IMPADAPT (CGL2013-48424-C2-1-R) with MINECO (Spanish Ministry of Economy) and Feder funds and by the Confederacion Hidrografica del Near (Spanish Ministry of Agriculture and Fisheries, Food and Environment). This study was also supported in part by the University Research Administration Center of the Tokyo University of Agriculture and Technology. Thanks to Maria Jose Felipe for reviewing the mathematical notation and to the two anonymous reviewers who helped to improve the manuscript.Muñoz Mas, R.; Fukuda, S.; Portolés, J.; Martinez-Capel, F. (2018). Revisiting probabilistic neural networks: a comparative study with support vector machines and the microhabitat suitability for the Eastern Iberian chub (Squalius valentinus). Ecological Informatics. 43:24-37. https://doi.org/10.1016/J.ECOINF.2017.10.008S24374

    Self-adaptive structure semi-supervised methods for streamed emblematic gestures

    Get PDF
    Although many researchers try to improve the level of machine intelligence, there is still a long way to achieve intelligence similar to what humans have. Scientists and engineers are continuously trying to increase the level of smartness of the modern technology, i.e. smartphones and robotics. Humans communicate with each other by using the voice and gestures. Hence, gestures are essential to transfer the information to the partner. To reach a higher level of intelligence, the machine should learn from and react to the human gestures, which mean learning from continuously streamed gestures. This task faces serious challenges since processing streamed data suffers from different problems. Besides the stream data being unlabelled, the stream is long. Furthermore, “concept-drift” and “concept evolution” are the main problems of them. The data of the data streams have several other problems that are worth to be mentioned here, e.g. they are: dynamically changed, presented only once, arrived at high speed, and non-linearly distributed. In addition to the general problems of the data streams, gestures have additional problems. For example, different techniques are required to handle the varieties of gesture types. The available methods solve some of these problems individually, while we present a technique to solve these problems altogether. Unlabelled data may have additional information that describes the labelled data more precisely. Hence, semi-supervised learning is used to handle the labelled and unlabelled data. However, the data size increases continuously, which makes training classifiers so hard. Hence, we integrate the incremental learning technique with semi-supervised learning, which enables the model to update itself on new data without the need of the old data. Additionally, we integrate the incremental class learning within the semi-supervised learning, since there is a high possibility of incoming new concepts in the streamed gestures. Moreover, the system should be able to distinguish among different concepts and also should be able to identify random movements. Hence, we integrate the novelty detection to distinguish between the gestures that belong to the known concepts and those that belong to unknown concepts. The extreme value theory is used for this purpose, which overrides the need of additional labelled data to set the novelty threshold and has several other supportive features. Clustering algorithms are used to distinguish among different new concepts and also to identify random movements. Furthermore, the system should be able to update itself on only the trusty assignments, since updating the classifier on wrongly assigned gesture affects the performance of the system. Hence, we propose confidence measures for the assigned labels. We propose six types of semi-supervised algorithms that depend on different techniques to handle different types of gestures. The proposed classifiers are based on the Parzen window classifier, support vector machine classifier, neural network (extreme learning machine), Polynomial classifier, Mahalanobis classifier, and nearest class mean classifier. All of these classifiers are provided with the mentioned features. Additionally, we submit a wrapper method that uses one of the proposed classifiers or ensemble of them to autonomously issue new labels to the new concepts and update the classifiers on the newly incoming information depending on whether they belong to the known classes or new classes. It can recognise the different novel concepts and also identify random movements. To evaluate the system we acquired gesture data with nine different gesture classes. Each of them represents a different order to the machine e.g. come, go, etc. The data are collected using the Microsoft Kinect sensor. The acquired data contain 2878 gestures achieved by ten volunteers. Different sets of features are computed and used in the evaluation of the system. Additionally, we used real data, synthetic data and public data as support to the evaluation process. All the features, incremental learning, incremental class learning, and novelty detection are evaluated individually. The outputs of the classifiers are compared with the original classifier or with the benchmark classifiers. The results show high performances of the proposed algorithms
    corecore