277 research outputs found

    A Design Pattern for Executable DSML

    Get PDF
    Model executability is now a key concern in model-driven engineering, mainly to support early validation and verification (V&V). Some approaches have allowed to weave executability into metamodels, defining executable domain-specific modeling languages (DSML). Then, model validation may be achieved by direct interpretation of the conforming models. Other approaches address model executability by model compilation, allowing to reuse the virtual machines or V&V tools existing in the target domain. Nevertheless, systematic methods are not available to help the language designer in the definition of such an execution semantics and related support tools. For instance, simulators are mostly hand-crafted in a tool specific manner for each DSML. In this paper, we propose to reify the elements commonly used to support execution in a DSML. We infer a design pattern (called Executable DSML pattern) providing a general reusable solution for the expression of the executability concerns in DSML. It favors flexibility and improves reusability in the definition of semantics-based tools for DSML. We illustrate how this pattern can be applied to V&V and models at runtime, and give insights on the development of generic and generative tools for model animators

    LEMP : a language engineering model-driven process

    Get PDF
    In this paper, we propose LEMP as a model-driven process to develop a language endowed with a set of derived artifacts (syntax, interchange format, APIs, ...) and with a well defined formal semantics. The process exploits the Model Driven Engineering principles of metamodeling, model transformation and automatic generation of language processing tools. We describe the requirements to fulfill and the development steps of this language engineering life cycle, including the validation activities regarding the syntactic and semantic aspects. As a proof-of-concepts, we apply LEMP to the Finite State Machines and we report our experience in developing a language for the Abstract State Machine formal method

    Linking Telecom Service High-level Abstract Models to Simulators based on Model Transformations: The IMS Case Study

    Get PDF
    Part 3: ManagementInternational audienceTelecommunication services are widespread and subject today to tensions on a competitive market. Telecommunication service design is more and more software oriented. To reduce time to market and cost of services, a service designer better need to simulate and evaluate his design earlier. The approach proposed in this paper is to reduce the abstraction gap between modeling and simulation phases using model transformation. But manual transformations are so far time consuming and error prone.As a trustworthy solution, model based techniques and associated transformations permit to systematically link service models with simulation phase before realization. We thus propose as a first contribution a meta-model dedicated to concepts of IP Multimedia Subsystem core network as a case study. Our meta-model constrains and defines such network entities to be used in the code generation, which is our second contribution. The implementation of a video conference service permits to illustrate our workbench

    A Language-centered Approach to support environmental modeling with Cellular Automata

    Get PDF
    Die Anwendung von Methodiken und Technologien aus dem Bereich der Softwaretechnik auf den Bereich der Umweltmodellierung ist eine gemeinhin akzeptierte Vorgehensweise. Im Rahmen der "modellgetriebenen Entwicklung"(MDE, model-driven engineering) werden Technologien entwickelt, die darauf abzielen, Softwaresysteme vorwiegend auf Basis von im Vergleich zu Programmquelltexten relativ abstrakten Modellen zu entwickeln. Ein wesentlicher Bestandteil von MDE sind Techniken zur effizienten Entwicklung von "domänenspezifischen Sprachen"( DSL, domain-specific language), die auf Sprachmetamodellen beruhen. Die vorliegende Arbeit zeigt, wie modellgetriebene Entwicklung, und insbesondere die metamodellbasierte Beschreibung von DSLs, darüber hinaus Aspekte der Pragmatik unterstützen kann, deren Relevanz im erkenntnistheoretischen und kognitiven Hintergrund wissenschaftlichen Forschens begründet wird. Hierzu wird vor dem Hintergrund der Erkenntnisse des "modellbasierten Forschens"(model-based science und model-based reasoning) gezeigt, wie insbesondere durch Metamodelle beschriebene DSLs Möglichkeiten bieten, entsprechende pragmatische Aspekte besonders zu berücksichtigen, indem sie als Werkzeug zur Erkenntnisgewinnung aufgefasst werden. Dies ist v.a. im Kontext großer Unsicherheiten, wie sie für weite Teile der Umweltmodellierung charakterisierend sind, von grundsätzlicher Bedeutung. Die Formulierung eines sprachzentrierten Ansatzes (LCA, language-centered approach) für die Werkzeugunterstützung konkretisiert die genannten Aspekte und bildet die Basis für eine beispielhafte Implementierung eines Werkzeuges mit einer DSL für die Beschreibung von Zellulären Automaten (ZA) für die Umweltmodellierung. Anwendungsfälle belegen die Verwendbarkeit von ECAL und der entsprechenden metamodellbasierten Werkzeugimplementierung.The application of methods and technologies of software engineering to environmental modeling and simulation (EMS) is common, since both areas share basic issues of software development and digital simulation. Recent developments within the context of "Model-driven Engineering" (MDE) aim at supporting the development of software systems at the base of relatively abstract models as opposed to programming language code. A basic ingredient of MDE is the development of methods that allow the efficient development of "domain-specific languages" (DSL), in particular at the base of language metamodels. This thesis shows how MDE and language metamodeling in particular, may support pragmatic aspects that reflect epistemic and cognitive aspects of scientific investigations. For this, DSLs and language metamodeling in particular are set into the context of "model-based science" and "model-based reasoning". It is shown that the specific properties of metamodel-based DSLs may be used to support those properties, in particular transparency, which are of particular relevance against the background of uncertainty, that is a characterizing property of EMS. The findings are the base for the formulation of an corresponding specific metamodel- based approach for the provision of modeling tools for EMS (Language-centered Approach, LCA), which has been implemented (modeling tool ECA-EMS), including a new DSL for CA modeling for EMS (ECAL). At the base of this implementation, the applicability of this approach is shown

    Correct-by-Construction Development of Dynamic Topology Control Algorithms

    Get PDF
    Wireless devices are influencing our everyday lives today and will even more so in the future. A wireless sensor network (WSN) consists of dozens to hundreds of small, cheap, battery-powered, resource-constrained sensor devices (motes) that cooperate to serve a common purpose. These networks are applied in safety- and security-critical areas (e.g., e-health, intrusion detection). The topology of such a system is an attributed graph consisting of nodes representing the devices and edges representing the communication links between devices. Topology control (TC) improves the energy consumption behavior of a WSN by blocking costly links. This allows a mote to reduce its transmission power. A TC algorithm must fulfill important consistency properties (e.g., that the resulting topology is connected). The traditional development process for TC algorithms only considers consistency properties during the initial specification phase. The actual implementation is carried out manually, which is error prone and time consuming. Thus, it is difficult to verify that the implementation fulfills the required consistency properties. The problem becomes even more severe if the development process is iterative. Additionally, many TC algorithms are batch algorithms, which process the entire topology, irrespective of the extent of the topology modifications since the last execution. Therefore, dynamic TC is desirable, which reacts to change events of the topology. In this thesis, we propose a model-driven correct-by-construction methodology for developing dynamic TC algorithms. We model local consistency properties using graph constraints and global consistency properties using second-order logic. Graph transformation rules capture the different types of topology modifications. To specify the control flow of a TC algorithm, we employ the programmed graph transformation language story-driven modeling. We presume that local consistency properties jointly imply the global consistency properties. We ensure the fulfillment of the local consistency properties by synthesizing weakest preconditions for each rule. The synthesized preconditions prohibit the application of a rule if and only if the application would lead to a violation of a consistency property. Still, this restriction is infeasible for topology modifications that need to be executed in any case. Therefore, as a major contribution of this thesis, we propose the anticipation loop synthesis algorithm, which transforms the synthesized preconditions into routines that anticipate all violations of these preconditions. This algorithm also enables the correct-by-construction runtime reconfiguration of adaptive WSNs. We provide tooling for both common evaluation steps. Cobolt allows to evaluate the specified TC algorithms rapidly using the network simulator Simonstrator. cMoflon generates embedded C code for hardware testbeds that build on the sensor operating system Contiki
    • …
    corecore