1,163 research outputs found

    Non functional requirements (NFRs) traceability metamodel for agile development

    Get PDF
    Agile methodologies are well known for early and frequent releases. Besides, these methodologies also handle requirement changes well without causing delays. However, it has been noticed that the functional requirements changes can affect the non-functional requirements (NFRs) such as security and performance. It is also possible that the agile team is not even aware of these effects causing dysfunctional system. This issue could be addressed by offering traceability mechanism that helps to trace the effect of functional requirement changes on the non-functional requirements. Unfortunately, a few researchers have conducted studies regarding this issue. Thus, this study attempts to present a Traceability Process Model (TPM) to tackle the issue of tracing NFR especially security and performance. However, to materialize a full scale TPM, a metamodel is necessary. Therefore in this paper, we present a metamodel by integrating two existing metamodels. Then we validate the newly built metamodel with precision and recall methods. Lastly, we also develop a traceability tool that is based on the proposed metamodel

    Requirements traceability in model-driven development: Applying model and transformation conformance

    Get PDF
    The variety of design artifacts (models) produced in a model-driven design process results in an intricate relationship between requirements and the various models. This paper proposes a methodological framework that simplifies management of this relationship, which helps in assessing the quality of models, realizations and transformation specifications. Our framework is a basis for understanding requirements traceability in model-driven development, as well as for the design of tools that support requirements traceability in model-driven development processes. We propose a notion of conformance between application models which reduces the effort needed for assessment activities. We discuss how this notion of conformance can be integrated with model transformations

    Change Impact Analysis based on Formalization of Trace Relations for Requirements

    Get PDF
    Evolving customer needs is one of the driving factors in software development. There is a need to analyze the impact of requirement changes in order to determine possible conflicts and design alternatives influenced by these changes. The analysis of the impact of requirement changes on related requirements can be based on requirements traceability. In this paper, we propose a requirements metamodel with well defined types of requirements relations. This metamodel represents the common concepts extracted from some prevalent requirements engineering approaches. The requirements relations in the metamodel are used to trace related requirements for change impact analysis. We formalize the relations. Based on this formalization, we define change impact rules for requirements. As a case study, we apply these rules to changes in the requirements specification for Course Management System

    A Model-Driven approach for functional test case generation

    Get PDF
    Test phase is one of the most critical phases in software engineering life cycle to assure the final system quality. In this context, functional system test cases verify that the system under test fulfills its functional specification. Thus, these test cases are frequently designed from the different scenarios and alternatives depicted in functional requirements. The objective of this paper is to introduce a systematic process based on the Model-Driven paradigm to automate the generation of functional test cases from functional requirements. For this aim, a set of metamodels and transformations and also a specific language domain to use them is presented. The paper finishes stating learned lessons from the trenches as well as relevant future work and conclusions that draw new research lines in the test cases generation context.Ministerio de Economía y Competitividad TIN2013-46928-C3-3-

    Metamodel for Tracing Concerns across the Life Cycle

    Get PDF
    Several aspect-oriented approaches have been proposed to specify aspects at different phases in the software life cycle. Aspects can appear within a phase, be refined or mapped to other aspects in later phases, or even disappear.\ud Tracing aspects is necessary to support understandability and maintainability of software systems. Although several approaches have been introduced to address traceability of aspects, two important limitations can be observed. First, tracing is not yet tackled for the entire life cycle. Second, the traceability model that is applied usually refers to elements of specific aspect languages, thereby limiting the reusability of the adopted traceability model.We propose the concern traceability metamodel (CTM) that enables traceability of concerns throughout the life cycle, and which is independent from the aspect languages that are used. CTM can be enhanced to provide additional properties for tracing, and be instantiated to define\ud customized traceability models with respect to the required aspect languages. We have implemented CTM in the tool M-Trace, that uses XML-based representations of the models and XQuery queries to represent tracing information. CTM and M-Trace are illustrated for a Concurrent Versioning System to trace aspects from the requirements level to architecture design level and the implementation

    Root Cause Analysis in Business Processes

    Get PDF
    Conceptual modeling is an important tool for understanding and revealing weaknesses of business processes. Yet, the current practice in reengineering projects often considers simply the as-is control flow and uses the respective model barely as a reference for brain-storming about improvement opportunities. This approach heavily relies on the intuition of the participants and misses a clear description of steps to identify root causes of problems. In contrast to that, this paper introduces a systematic methodology to detect and document the quality dimension of a business process. It builds on the definition of softgoals for each process activity, of correlations between softgoals, and metrics to measure the occurrence of quality issues. In this regard our contribution is a foundation of root-cause analysis in business process modeling, and a conceptual integration of goal-based and activity-based approaches to capturing processes

    Semantics of trace relations in requirements models for consistency checking and inferencing

    Get PDF
    Requirements traceability is the ability to relate requirements back to stakeholders and forward to corresponding design artifacts, code, and test cases. Although considerable research has been devoted to relating requirements in both forward and backward directions, less attention has been paid to relating requirements with other requirements. Relations between requirements influence a number of activities during software development such as consistency checking and change management. In most approaches and tools, there is a lack of precise definition of requirements relations. In this respect, deficient results may be produced. In this paper, we aim at formal definitions of the relation types in order to enable reasoning about requirements relations. We give a requirements metamodel with commonly used relation types. The semantics of the relations is provided with a formalization in first-order logic. We use the formalization for consistency checking of relations and for inferring new relations. A tool has been built to support both reasoning activities. We illustrate our approach in an example which shows that the formal semantics of relation types enables new relations to be inferred and contradicting relations in requirements documents to be determined. The application of requirements reasoning based on formal semantics resolves many of the deficiencies observed in other approaches. Our tool supports better understanding of dependencies between requirements

    Lean requirements traceability automation enabled by model-driven engineering

    Get PDF
    Background: The benefits of requirements traceability, such as improvements in software product and process quality, early testing, and software maintenance, are widely described in the literature. Requirements traceability is a critical, widely accepted practice. However, very often it is not applied for fear of the additional costs associated with manual efforts or the use of additional tools. Methods: This article presents a “low-cost” mechanism for automating requirements traceability based on the model-driven paradigm and formalized by a metamodel for the creation and monitoring of traces and an integration process for traceability management. This approach can also be useful for information fusion in industry insofar that it facilitates data traceability. Results: This article extends an existing model-driven development methodology to incorporate traceability as part of its development tool. The tool has been used successfully by several companies in real software development projects, helping developers to manage ongoing changes in functional requirements. One of those projects is cited as an example in the paper. The authors’ current work leads them to conclude that a model-driven engineering approach, traditionally used only for the automatic generation of code in a software development process, can also be used to successfully automate and integrate traceability management without additional costs. The systematic evaluation of traceability management in industrial projects constitutes a promising area for future work.Junta de Andalucía AT17-5904-USEJunta de Andalucía US-1251532Ministerio de Ciencia, Innovación y Universidades PID2019-105455GB-C3

    A situational approach for the definition and tailoring of a data-driven software evolution method

    Get PDF
    Successful software evolution heavily depends on the selection of the right features to be included in the next release. Such selection is difficult, and companies often report bad experiences about user acceptance. To overcome this challenge, there is an increasing number of approaches that propose intensive use of data to drive evolution. This trend has motivated the SUPERSEDE method, which proposes the collection and analysis of user feedback and monitoring data as the baseline to elicit and prioritize requirements, which are then used to plan the next release. However, every company may be interested in tailoring this method depending on factors like project size, scope, etc. In order to provide a systematic approach, we propose the use of Situational Method Engineering to describe SUPERSEDE and guide its tailoring to a particular context.Peer ReviewedPostprint (author's final draft
    corecore