82 research outputs found

    Design of Mixed-Criticality Applications on Distributed Real-Time Systems

    Get PDF

    Automatic control program creation using concurrent Evolutionary Computing

    Get PDF
    Over the past decade, Genetic Programming (GP) has been the subject of a significant amount of research, but this has resulted in the solution of few complex real -world problems. In this work, I propose that, for some relatively simple, non safety -critical embedded control applications, GP can be used as a practical alternative to software developed by humans. Embedded control software has become a branch of software engineering with distinct temporal, interface and resource constraints and requirements. This results in a characteristic software structure, and by examining this, the effective decomposition of an overall problem into a number of smaller, simpler problems is performed. It is this type of problem amelioration that is suggested as a method whereby certain real -world problems may be rendered into a soluble form suitable for GP. In the course of this research, the body of published GP literature was examined and the most important changes to the original GP technique of Koza are noted; particular focus is made upon GP techniques involving an element of concurrency -which is central to this work. This search highlighted few applications of GP for the creation of software for complex, real -world problems -this was especially true in the case of multi thread, multi output solutions. To demonstrate this Idea, a concurrent Linear GP (LGP) system was built that creates a multiple input -multiple output solution using a custom low -level evolutionary language set, combining both continuous and Boolean data types. The system uses a multi -tasking model to evolve and execute the required LGP code for each system output using separate populations: Two example problems -a simple fridge controller and a more complex washing machine controller are described, and the problems encountered and overcome during the successful solution of these problems, are detailed. The operation of the complete, evolved washing machine controller is simulated using a graphical LabVIEWapplication. The aim of this research is to propose a general purpose system for the automatic creation of control software for use in a range of problems from the target problem class -without requiring any system tuning: In order to assess the system search performance sensitivity, experiments were performed using various population and LGP string sizes; the experimental data collected was also used to examine the utility of abandoning stalled searches and restarting. This work is significant because it identifies a realistic application of GP that can ease the burden of finite human software design resources, whilst capitalising on accelerating computing potential

    A Survey on Industrial Control System Testbeds and Datasets for Security Research

    Full text link
    The increasing digitization and interconnection of legacy Industrial Control Systems (ICSs) open new vulnerability surfaces, exposing such systems to malicious attackers. Furthermore, since ICSs are often employed in critical infrastructures (e.g., nuclear plants) and manufacturing companies (e.g., chemical industries), attacks can lead to devastating physical damages. In dealing with this security requirement, the research community focuses on developing new security mechanisms such as Intrusion Detection Systems (IDSs), facilitated by leveraging modern machine learning techniques. However, these algorithms require a testing platform and a considerable amount of data to be trained and tested accurately. To satisfy this prerequisite, Academia, Industry, and Government are increasingly proposing testbed (i.e., scaled-down versions of ICSs or simulations) to test the performances of the IDSs. Furthermore, to enable researchers to cross-validate security systems (e.g., security-by-design concepts or anomaly detectors), several datasets have been collected from testbeds and shared with the community. In this paper, we provide a deep and comprehensive overview of ICSs, presenting the architecture design, the employed devices, and the security protocols implemented. We then collect, compare, and describe testbeds and datasets in the literature, highlighting key challenges and design guidelines to keep in mind in the design phases. Furthermore, we enrich our work by reporting the best performing IDS algorithms tested on every dataset to create a baseline in state of the art for this field. Finally, driven by knowledge accumulated during this survey's development, we report advice and good practices on the development, the choice, and the utilization of testbeds, datasets, and IDSs

    Airborne Directional Networking: Topology Control Protocol Design

    Get PDF
    This research identifies and evaluates the impact of several architectural design choices in relation to airborne networking in contested environments related to autonomous topology control. Using simulation, we evaluate topology reconfiguration effectiveness using classical performance metrics for different point-to-point communication architectures. Our attention is focused on the design choices which have the greatest impact on reliability, scalability, and performance. In this work, we discuss the impact of several practical considerations of airborne networking in contested environments related to autonomous topology control modeling. Using simulation, we derive multiple classical performance metrics to evaluate topology reconfiguration effectiveness for different point-to-point communication architecture attributes for the purpose of qualifying protocol design elements
    • …
    corecore