4,366 research outputs found

    A theoretical and computational basis for CATNETS

    Get PDF
    The main content of this report is the identification and definition of market mechanisms for Application Layer Networks (ALNs). On basis of the structured Market Engineering process, the work comprises the identification of requirements which adequate market mechanisms for ALNs have to fulfill. Subsequently, two mechanisms for each, the centralized and the decentralized case are described in this document. These build the theoretical foundation for the work within the following two years of the CATNETS project. --Grid Computing

    Theoretical and Computational Basis for Economical Ressource Allocation in Application Layer Networks - Annual Report Year 1

    Get PDF
    This paper identifies and defines suitable market mechanisms for Application Layer Networks (ALNs). On basis of the structured Market Engineering process, the work comprises the identification of requirements which adequate market mechanisms for ALNs have to fulfill. Subsequently, two mechanisms for each, the centralized and the decentralized case are described in this document. --Grid Computing

    Architectural Patterns for the Semantic Grid

    Get PDF
    The Semantic Grid reference architecture, S-OGSA, includes semantic provisioning services that are able to produce semantic annotations of Grid resources, and semantically aware Gridservices that are able to exploit those annotations in various ways. In this paper we describe the dynamic aspects of S-OGSA by presenting the typical patterns of interaction among these services. A use case for a Grid meta-scheduling service is used to illustrate how the patterns are applied in practice

    Decentralised Workload Scheduler for Resource Allocation in Computational Clusters

    Get PDF
    This paper presents a detailed design of a decentralised agent-based scheduler, which can be used to manage workloads within the computing cells of a Cloud system. Our proposed solution is based on the concept of service allocation negotiation, whereby all system nodes communicate between themselves, and scheduling logic is decentralised. The presented architecture has been implemented, with multiple simulations run using real-world workload traces from the Google Cluster Data project. The results were then compared to the scheduling patterns of Google’s Borg system

    Autonomous resource-aware scheduling of large-scale media workflows

    Get PDF
    The media processing and distribution industry generally requires considerable resources to be able to execute the various tasks and workflows that constitute their business processes. The latter processes are often tied to critical constraints such as strict deadlines. A key issue herein is how to efficiently use the available computational, storage and network resources to be able to cope with the high work load. Optimizing resource usage is not only vital to scalability, but also to the level of QoS (e.g. responsiveness or prioritization) that can be provided. We designed an autonomous platform for scheduling and workflow-to-resource assignment, taking into account the different requirements and constraints. This paper presents the workflow scheduling algorithms, which consider the state and characteristics of the resources (computational, network and storage). The performance of these algorithms is presented in detail in the context of a European media processing and distribution use-case

    Offline and online power aware resource allocation algorithms with migration and delay constraints

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/In order to handle advanced mobile broadband services and Internet of Things (IoT), future Internet and 5G networks are expected to leverage the use of network virtualization, be much faster, have greater capacities, provide lower latencies, and significantly be power efficient than current mobile technologies. Therefore, this paper proposes three power aware algorithms for offline, online, and migration applications, solving the resource allocation problem within the frameworks of network function virtualization (NFV) environments in fractions of a second. The proposed algorithms target minimizing the total costs and power consumptions in the physical network through sufficiently allocating the least physical resources to host the demands of the virtual network services, and put into saving mode all other not utilized physical components. Simulations and evaluations of the offline algorithm compared to the state-of-art resulted on lower total costs by 32%. In addition to that, the online algorithm was tested through four different experiments, and the results argued that the overall power consumption of the physical network was highly dependent on the demands’ lifetimes, and the strictness of the required end-to-end delay. Regarding migrations during online, the results concluded that the proposed algorithms would be most effective when applied for maintenance and emergency conditions.Peer ReviewedPreprin

    QoS Provisioning by Meta-Scheduling in Advance within SLA-Based Grid Environments

    Get PDF
    The establishment of agreements between users and the entities which manage the Grid resources is still a challenging task. On the one hand, an entity in charge of dealing with the communication with the users is needed, with the aim of signing resource usage contracts and also implementing some renegotiation techniques, among others. On the other hand, some mechanisms should be implemented which decide if the QoS requested could be achieved and, in such case, ensuring that the QoS agreement is provided. One way of increasing the probability of achieving the agreed QoS is by performing meta-scheduling of jobs in advance, that is, jobs are scheduled some time before they are actually executed. In this way, it becomes more likely that the appropriate resources are available to run the jobs when needed. So, this paper presents a framework built on top of Globus and the GridWay meta-scheduler to provide QoS by means of performing meta-scheduling in advance. Thanks to this, QoS requirements of jobs are met (i.e. jobs are finished within a deadline). Apart from that, the mechanisms needed to manage the communication between the users and the system are presented and implemented through SLA contracts based on the WS-Agreement specification
    • …
    corecore