8,134 research outputs found

    Lifelong learning of concepts in CRAFT

    Full text link
    La planification à des niveaux d’abstraction plus élevés est essentielle lorsqu’il s’agit de résoudre des tâches à long horizon avec des complexités hiérarchiques. Pour planifier avec succès à un niveau d’abstraction donné, un agent doit comprendre le fonctionnement de l’environnement à ce niveau particulier. Cette compréhension peut être implicite en termes de politiques, de fonctions de valeur et de modèles, ou elle peut être définie explicitement. Dans ce travail, nous introduisons les concepts comme un moyen de représenter et d’accumuler explicitement des informations sur l’environnement. Les concepts sont définis en termes de transition d’état et des conditions requises pour que cette transition ait lieu. La simplicité de cette définition offre flexibilité et contrôle sur le processus d’apprentissage. Étant donné que les concepts sont de nature hautement interprétable, il est facile d’encoder les connaissances antérieures et d’intervenir au cours du processus d’apprentissage si nécessaire. Cette définition facilite également le transfert de concepts entre différents domaines. Les concepts, à un niveau d’abstraction donné, sont intimement liés aux compétences, ou actions temporellement abstraites. Toutes les transitions d’état suffisamment importantes pour être représentées par un concept se produisent après l’exécution réussie d’une compétence. En exploitant cette relation, nous introduisons un cadre qui facilite l’apprentissage tout au long de la vie et le raffinement des concepts à différents niveaux d’abstraction. Le cadre comporte trois volets: Le sytème 1 segmente un flux d’expérience (par exemple une démonstration) en une séquence de compétences. Cette segmentation peut se faire à différents niveaux d’abstraction. Le sytème 2 analyse ces segments pour affiner et mettre à niveau son ensemble de concepts, lorsqu’applicable. Le sytème 3 utilise les concepts disponibles pour générer un graphe de dépendance de sous-tâches. Ce graphe peut être utilisé pour planifier à différents niveaux d’abstraction. Nous démontrons l’applicabilité de ce cadre dans l’environnement hiérarchique 2D CRAFT. Nous effectuons des expériences pour explorer comment les concepts peuvent être appris de différents flux d’expérience et comment la qualité de la base de concepts affecte l’optimalité du plan général. Dans les tâches avec des dépendances de sous-tâches complexes, où la plupart des algorithmes ne parviennent pas à se généraliser ou prennent un temps impraticable à converger, nous démontrons que les concepts peuvent être utilisés pour simplifier considérablement la planification. Ce cadre peut également être utilisé pour comprendre l’intention d’une démonstration donnée en termes de concepts. Cela permet à l’agent de répliquer facilement la démonstration dans différents environnements. Nous montrons que cette méthode d’imitation est beaucoup plus robuste aux changements de configuration de l’environnement que les méthodes traditionnelles. Dans notre formulation du problème, nous faisons deux hypothèses: 1) que nous avons accès à un ensemble de compétences suffisamment exhaustif, et 2) que notre agent a accès à des environnements de pratique, qui peuvent être utilisés pour affiner les concepts en cas de besoin. L’objectif de ce travail est d’explorer l’aspect pratique des concepts d’apprentissage comme moyen d’améliorer la compréhension de l’environnement. Dans l’ensemble, nous démontrons que les concepts d’apprentissagePlanning at higher levels of abstraction is critical when it comes to solving long horizon tasks with hierarchical complexities. To plan successfully at a given level of abstraction, an agent must have an understanding of how the environment functions at that particular level. This understanding may be implicit in terms of policies, value functions, and world models, or it can be defined explicitly. In this work, we introduce concepts as a means to explicitly represent and accumulate information about the environment. Concepts are defined in terms of a state transition and the conditions required for that transition to take place. The simplicity of this definition offers flexibility and control over the learning process. Since concepts are highly interpretable in nature, it is easy to encode prior knowledge and intervene during the learning process if necessary. This definition also makes it relatively straightforward to transfer concepts across different domains wherever applicable. Concepts, at a given level of abstraction, are intricately linked to skills, or temporally abstracted actions. All the state transitions significant enough to be represented by a concept occur only after the successful execution of a skill. Exploiting this relationship, we introduce a framework that aids in lifelong learning and refining of concepts across different levels of abstraction. The framework has three components: - System 1 segments a stream of experience (e.g. a demonstration) into a sequence of skills. This segmentation can be done at different levels of abstraction. - System 2 analyses these segments to refine and upgrade its set of concepts, whenever applicable. - System 3 utilises the available concepts to generate a sub-task dependency graph. This graph can be used for planning at different levels of abstraction We demonstrate the applicability of this framework in the 2D hierarchical environment CRAFT. We perform experiments to explore how concepts can be learned from different streams of experience, and how the quality of the concept base affects the optimality of the overall plan. In tasks with complex sub-task dependencies, where most algorithms fail to generalise or take an impractical amount of time to converge, we demonstrate that concepts can be used to significantly simplify planning. This framework can also be used to understand the intention of a given demonstration in terms of concepts. This makes it easy for the agent to replicate a demonstration in different environments. We show that this method of imitation is much more robust to changes in the environment configurations than traditional methods. In our problem formulation, we make two assumptions: 1) that we have access to a sufficiently exhaustive set of skills, and 2) that our agent has access to practice environments, which can be used to refine concepts when needed. The objective behind this work is to explore the practicality of learning concepts as a means to improve one’s understanding about the environment. Overall, we demonstrate that learning concepts can be a light-weight yet efficient way to increase the capability of a system

    Learning Disentangled Representations in the Imaging Domain

    Full text link
    Disentangled representation learning has been proposed as an approach to learning general representations even in the absence of, or with limited, supervision. A good general representation can be fine-tuned for new target tasks using modest amounts of data, or used directly in unseen domains achieving remarkable performance in the corresponding task. This alleviation of the data and annotation requirements offers tantalising prospects for applications in computer vision and healthcare. In this tutorial paper, we motivate the need for disentangled representations, present key theory, and detail practical building blocks and criteria for learning such representations. We discuss applications in medical imaging and computer vision emphasising choices made in exemplar key works. We conclude by presenting remaining challenges and opportunities.Comment: Submitted. This paper follows a tutorial style but also surveys a considerable (more than 200 citations) number of work

    Causal Disentangled Recommendation Against User Preference Shifts

    Full text link
    Recommender systems easily face the issue of user preference shifts. User representations will become out-of-date and lead to inappropriate recommendations if user preference has shifted over time. To solve the issue, existing work focuses on learning robust representations or predicting the shifting pattern. There lacks a comprehensive view to discover the underlying reasons for user preference shifts. To understand the preference shift, we abstract a causal graph to describe the generation procedure of user interaction sequences. Assuming user preference is stable within a short period, we abstract the interaction sequence as a set of chronological environments. From the causal graph, we find that the changes of some unobserved factors (e.g., becoming pregnant) cause preference shifts between environments. Besides, the fine-grained user preference over categories sparsely affects the interactions with different items. Inspired by the causal graph, our key considerations to handle preference shifts lie in modeling the interaction generation procedure by: 1) capturing the preference shifts across environments for accurate preference prediction, and 2) disentangling the sparse influence from user preference to interactions for accurate effect estimation of preference. To this end, we propose a Causal Disentangled Recommendation (CDR) framework, which captures preference shifts via a temporal variational autoencoder and learns the sparse influence from multiple environments. Specifically, an encoder is adopted to infer the unobserved factors from user interactions while a decoder is to model the interaction generation process. Besides, we introduce two learnable matrices to disentangle the sparse influence from user preference to interactions. Lastly, we devise a multi-objective loss to optimize CDR. Extensive experiments on three datasets show the superiority of CDR.Comment: This paper has been accepted for publication in Transactions on Information System

    Disentangled Representation Learning

    Full text link
    Disentangled Representation Learning (DRL) aims to learn a model capable of identifying and disentangling the underlying factors hidden in the observable data in representation form. The process of separating underlying factors of variation into variables with semantic meaning benefits in learning explainable representations of data, which imitates the meaningful understanding process of humans when observing an object or relation. As a general learning strategy, DRL has demonstrated its power in improving the model explainability, controlability, robustness, as well as generalization capacity in a wide range of scenarios such as computer vision, natural language processing, data mining etc. In this article, we comprehensively review DRL from various aspects including motivations, definitions, methodologies, evaluations, applications and model designs. We discuss works on DRL based on two well-recognized definitions, i.e., Intuitive Definition and Group Theory Definition. We further categorize the methodologies for DRL into four groups, i.e., Traditional Statistical Approaches, Variational Auto-encoder Based Approaches, Generative Adversarial Networks Based Approaches, Hierarchical Approaches and Other Approaches. We also analyze principles to design different DRL models that may benefit different tasks in practical applications. Finally, we point out challenges in DRL as well as potential research directions deserving future investigations. We believe this work may provide insights for promoting the DRL research in the community.Comment: 22 pages,9 figure

    Disentangled Generative Causal Representation Learning

    Full text link
    This paper proposes a Disentangled gEnerative cAusal Representation (DEAR) learning method. Unlike existing disentanglement methods that enforce independence of the latent variables, we consider the general case where the underlying factors of interests can be causally correlated. We show that previous methods with independent priors fail to disentangle causally correlated factors. Motivated by this finding, we propose a new disentangled learning method called DEAR that enables causal controllable generation and causal representation learning. The key ingredient of this new formulation is to use a structural causal model (SCM) as the prior for a bidirectional generative model. The prior is then trained jointly with a generator and an encoder using a suitable GAN loss incorporated with supervision. We provide theoretical justification on the identifiability and asymptotic consistency of the proposed method, which guarantees disentangled causal representation learning under appropriate conditions. We conduct extensive experiments on both synthesized and real data sets to demonstrate the effectiveness of DEAR in causal controllable generation, and the benefits of the learned representations for downstream tasks in terms of sample efficiency and distributional robustness

    Inductive Biases for Deep Learning of Higher-Level Cognition

    Full text link
    A fascinating hypothesis is that human and animal intelligence could be explained by a few principles (rather than an encyclopedic list of heuristics). If that hypothesis was correct, we could more easily both understand our own intelligence and build intelligent machines. Just like in physics, the principles themselves would not be sufficient to predict the behavior of complex systems like brains, and substantial computation might be needed to simulate human-like intelligence. This hypothesis would suggest that studying the kind of inductive biases that humans and animals exploit could help both clarify these principles and provide inspiration for AI research and neuroscience theories. Deep learning already exploits several key inductive biases, and this work considers a larger list, focusing on those which concern mostly higher-level and sequential conscious processing. The objective of clarifying these particular principles is that they could potentially help us build AI systems benefiting from humans' abilities in terms of flexible out-of-distribution and systematic generalization, which is currently an area where a large gap exists between state-of-the-art machine learning and human intelligence.Comment: This document contains a review of authors research as part of the requirement of AG's predoctoral exam, an overview of the main contributions of the authors few recent papers (co-authored with several other co-authors) as well as a vision of proposed future researc
    • …
    corecore