52 research outputs found

    Hybrid Message Passing Algorithm for Downlink FDD Massive MIMO-OFDM Channel Estimation

    Full text link
    The design of message passing algorithms on factor graphs has been proven to be an effective manner to implement channel estimation in wireless communication systems. In Bayesian approaches, a prior probability model that accurately matches the channel characteristics can effectively improve estimation performance. In this work, we study the channel estimation problem in a frequency division duplexing (FDD) downlink massive multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system. As the prior probability, we propose the Markov chain two-state Gaussian mixture with large variance difference (TSGM-LVD) model to exploit the structured sparsity in the angle-frequency domain of the massive MIMO-OFDM channel. In addition, we present a new method to derive the hybrid message passing (HMP) rule, which can calculate the message with mixed linear and non-linear model. To the best of the authors' knowledge, we are the first to apply the HMP rule to practical communication systems, designing the HMP-TSGM-LVD algorithm under the structured turbo-compressed sensing (STCS) framework. Simulation results demonstrate that the proposed HMP-TSGM-LVD algorithm converges faster and outperforms its counterparts under a wide range of simulation settings

    Compressive sensing based Bayesian sparse channel estimation for OFDM communication systems: high performance and low complexity

    Full text link
    In orthogonal frequency division modulation (OFDM) communication systems, channel state information (CSI) is required at receiver due to the fact that frequency-selective fading channel leads to disgusting inter-symbol interference (ISI) over data transmission. Broadband channel model is often described by very few dominant channel taps and they can be probed by compressive sensing based sparse channel estimation (SCE) methods, e.g., orthogonal matching pursuit algorithm, which can take the advantage of sparse structure effectively in the channel as for prior information. However, these developed methods are vulnerable to both noise interference and column coherence of training signal matrix. In other words, the primary objective of these conventional methods is to catch the dominant channel taps without a report of posterior channel uncertainty. To improve the estimation performance, we proposed a compressive sensing based Bayesian sparse channel estimation (BSCE) method which can not only exploit the channel sparsity but also mitigate the unexpected channel uncertainty without scarifying any computational complexity. The propose method can reveal potential ambiguity among multiple channel estimators that are ambiguous due to observation noise or correlation interference among columns in the training matrix. Computer simulations show that propose method can improve the estimation performance when comparing with conventional SCE methods.Comment: 24 pages,16 figures, submitted for a journa

    Message-Passing Receivers for Single Carrier Systems with Frequency-Domain Equalization

    Get PDF

    Iterative frequency domain equalization with generalized approximate message passing

    Get PDF
    An iterative frequency domain equalization approach for coded single-carrier block transmissions over frequency selective channels is developed by using the recently proposed generalized approximate message passing (GAMP) algorithm. Compared with the low-complexity iterative frequency domain linear minimum mean square error (FD-LMMSE) equalization, the proposed approach can achieve significant performance gain with slight complexity increase
    corecore