3,242 research outputs found

    RELEASE: A High-level Paradigm for Reliable Large-scale Server Software

    Get PDF
    Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the first six months. The project aim is to scale the Erlang’s radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the effectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene

    RELEASE: A High-level Paradigm for Reliable Large-scale Server Software

    Get PDF
    Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the rst six months. The project aim is to scale the Erlang's radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the e ectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene

    Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS

    Full text link
    GROMACS is a widely used package for biomolecular simulation, and over the last two decades it has evolved from small-scale efficiency to advanced heterogeneous acceleration and multi-level parallelism targeting some of the largest supercomputers in the world. Here, we describe some of the ways we have been able to realize this through the use of parallelization on all levels, combined with a constant focus on absolute performance. Release 4.6 of GROMACS uses SIMD acceleration on a wide range of architectures, GPU offloading acceleration, and both OpenMP and MPI parallelism within and between nodes, respectively. The recent work on acceleration made it necessary to revisit the fundamental algorithms of molecular simulation, including the concept of neighborsearching, and we discuss the present and future challenges we see for exascale simulation - in particular a very fine-grained task parallelism. We also discuss the software management, code peer review and continuous integration testing required for a project of this complexity.Comment: EASC 2014 conference proceedin

    Hierarchical Parallelisation of Functional Renormalisation Group Calculations -- hp-fRG

    Get PDF
    The functional renormalisation group (fRG) has evolved into a versatile tool in condensed matter theory for studying important aspects of correlated electron systems. Practical applications of the method often involve a high numerical effort, motivating the question in how far High Performance Computing (HPC) can leverage the approach. In this work we report on a multi-level parallelisation of the underlying computational machinery and show that this can speed up the code by several orders of magnitude. This in turn can extend the applicability of the method to otherwise inaccessible cases. We exploit three levels of parallelisation: Distributed computing by means of Message Passing (MPI), shared-memory computing using OpenMP, and vectorisation by means of SIMD units (single-instruction-multiple-data). Results are provided for two distinct High Performance Computing (HPC) platforms, namely the IBM-based BlueGene/Q system JUQUEEN and an Intel Sandy-Bridge-based development cluster. We discuss how certain issues and obstacles were overcome in the course of adapting the code. Most importantly, we conclude that this vast improvement can actually be accomplished by introducing only moderate changes to the code, such that this strategy may serve as a guideline for other researcher to likewise improve the efficiency of their codes

    MPWide: a light-weight library for efficient message passing over wide area networks

    Full text link
    We present MPWide, a light weight communication library which allows efficient message passing over a distributed network. MPWide has been designed to connect application running on distributed (super)computing resources, and to maximize the communication performance on wide area networks for those without administrative privileges. It can be used to provide message-passing between application, move files, and make very fast connections in client-server environments. MPWide has already been applied to enable distributed cosmological simulations across up to four supercomputers on two continents, and to couple two different bloodflow simulations to form a multiscale simulation.Comment: accepted by the Journal Of Open Research Software, 13 pages, 4 figures, 1 tabl

    dOpenCL: Towards a Uniform Programming Approach for Distributed Heterogeneous Multi-/Many-Core Systems

    Get PDF
    Modern computer systems are becoming increasingly heterogeneous by comprising multi-core CPUs, GPUs, and other accelerators. Current programming approaches for such systems usually require the application developer to use a combination of several programming models (e. g., MPI with OpenCL or CUDA) in order to exploit the full compute capability of a system. In this paper, we present dOpenCL (Distributed OpenCL) – a uniform approach to programming distributed heterogeneous systems with accelerators. dOpenCL extends the OpenCL standard, such that arbitrary computing devices installed on any node of a distributed system can be used together within a single application. dOpenCL allows moving data and program code to these devices in a transparent, portable manner. Since dOpenCL is designed as a fully-fledged implementation of the OpenCL API, it allows running existing OpenCL applications in a heterogeneous distributed environment without any modifications. We describe in detail the mechanisms that are required to implement OpenCL for distributed systems, including a device management mechanism for running multiple applications concurrently. Using three application studies, we compare the performance of dOpenCL with MPI+OpenCL and a standard OpenCL implementation

    FluidFFT: common API (C++ and Python) for Fast Fourier Transform HPC libraries

    Get PDF
    The Python package fluidfft provides a common Python API for performing Fast Fourier Transforms (FFT) in sequential, in parallel and on GPU with different FFT libraries (FFTW, P3DFFT, PFFT, cuFFT). fluidfft is a comprehensive FFT framework which allows Python users to easily and efficiently perform FFT and the associated tasks, such as as computing linear operators and energy spectra. We describe the architecture of the package composed of C++ and Cython FFT classes, Python "operator" classes and Pythran functions. The package supplies utilities to easily test itself and benchmark the different FFT solutions for a particular case and on a particular machine. We present a performance scaling analysis on three different computing clusters and a microbenchmark showing that fluidfft is an interesting solution to write efficient Python applications using FFT
    • …
    corecore