136 research outputs found

    Dealing with uncertainty in agent-based models for short-term predictions

    Get PDF
    Agent-based models (ABMs) are gaining traction as one of the most powerful modelling tools within the social sciences. They are particularly suited to simulating complex systems. Despite many methodological advances within ABM, one of the major drawbacks is their inability to incorporate real-time data to make accurate short-term predictions. This paper presents an approach that allows ABMs to be dynamically optimized. Through a combination of parameter calibration and data assimilation (DA), the accuracy of model-based predictions using ABM in real time is increased. We use the exemplar of a bus route system to explore these methods. The bus route ABMs developed in this research are examples of ABMs that can be dynamically optimized by a combination of parameter calibration and DA. The proposed model and framework is a novel and transferable approach that can be used in any passenger information system, or in an intelligent transport systems to provide forecasts of bus locations and arrival times

    Statistical Filtering for Multimodal Mobility Modeling in Cyber Physical Systems

    Get PDF
    A Cyber-Physical System integrates computations and dynamics of physical processes. It is an engineering discipline focused on technology with a strong foundation in mathematical abstractions. It shares many of these abstractions with engineering and computer science, but still requires adaptation to suit the dynamics of the physical world. In such a dynamic system, mobility management is one of the key issues against developing a new service. For example, in the study of a new mobile network, it is necessary to simulate and evaluate a protocol before deployment in the system. Mobility models characterize mobile agent movement patterns. On the other hand, they describe the conditions of the mobile services. The focus of this thesis is on mobility modeling in cyber-physical systems. A macroscopic model that captures the mobility of individuals (people and vehicles) can facilitate an unlimited number of applications. One fundamental and obvious example is traffic profiling. Mobility in most systems is a dynamic process and small non-linearities can lead to substantial errors in the model. Extensive research activities on statistical inference and filtering methods for data modeling in cyber-physical systems exist. In this thesis, several methods are employed for multimodal data fusion, localization and traffic modeling. A novel energy-aware sparse signal processing method is presented to process massive sensory data. At baseline, this research examines the application of statistical filters for mobility modeling and assessing the difficulties faced in fusing massive multi-modal sensory data. A statistical framework is developed to apply proposed methods on available measurements in cyber-physical systems. The proposed methods have employed various statistical filtering schemes (i.e., compressive sensing, particle filtering and kernel-based optimization) and applied them to multimodal data sets, acquired from intelligent transportation systems, wireless local area networks, cellular networks and air quality monitoring systems. Experimental results show the capability of these proposed methods in processing multimodal sensory data. It provides a macroscopic mobility model of mobile agents in an energy efficient way using inconsistent measurements

    VEHICULAR TRAFFIC MODELLING, DATA ASSIMILATION, ESTIMATION AND SHORT TERM TRAVEL TIME PREDICTION

    Get PDF
    This dissertation deals with the problem of short term travel time prediction. Traffic dynamics models and traffic measurements are in particular the tools in approaching this problem. Effectively, a data-driven traffic modeling approach is adopted. Assimilating key traffic variables (flow, density, and speed) under standard continuum traffic flow models is fairly straight-forward. In current practice, travel time (space integral of pace or inverse of speed) is obtained through trajectory construction methods. However, the inverse problem of estimating speeds based on travel times is generally under-determined. In this dissertation, appropriate dynamic model and solution algorithms are proposed to jointly estimate speeds and travel times. This model essentially paves the way to assimilate travel time data with other traffic measurements. The proposed travel time prediction framework takes into account the fact that in reality neither traffic models nor measurements are flawless. Therefore, optimal state estimation methods to solve the resulting state-space model in real-time are proposed. Alternative optimality criterion such as minimization of the variance of estimate errors and minimization of the maximum (minmax) estimate errors are considered. Practical considerations such as occurrence of missing data, delayed (out of order) arrival of measurements and their impact on solution quality are addressed. Proposed models and algorithms are tested on datasets provided under NGSIM project

    Doctor of Philosophy

    Get PDF
    dissertationThe Active Traffic and Demand Management (ATDM) initiative aims to integrate various management strategies and control measures so as to achieve the mobility, environment and sustainability goals. To support the active monitoring and management of real-world complex traffic conditions, the first objective of this dissertation is to develop a travel time reliability estimation and prediction methodology that can provide informed decisions for the management and operation agencies and travelers. A systematic modeling framework was developed to consider a corridor with multiple bottlenecks, and a series of close-form formulas was derived to quantify the travel time distribution under both stochastic demand and capacity, with possible on-ramp and off-ramp flow changes. Traffic state estimation techniques are often used to guide operational management decisions, and accurate traffic estimates are critically needed in ATDM applications designed for reducing instability, volatility and emissions in the transportation system. By capturing the essential forward and backward wave propagation characteristics under possible random measurement errors, this dissertation proposes a unified representation with a simple but theoretically sound explanation for traffic observations under free-flow, congested and dynamic transient conditions. This study also presents a linear programming model to quantify the value of traffic measurements, in a heterogeneous data environment with fixed sensors, Bluetooth readers and GPS sensors. It is important to design comprehensive traffic control measures that can systematically address deteriorating congestion and environmental issues. To better evaluate and assess the mobility and environmental benefits of the transportation improvement plans, this dissertation also discusses a cross-resolution modeling framework for integrating a microscopic emission model with the existing mesoscopic traffic simulation model. A simplified car-following model-based vehicle trajectory construction method is used to generate the high-resolution vehicle trajectory profiles and resulting emission output. In addition, this dissertation discusses a number of important issues for a cloud computing-based software system implementation. A prototype of a reliability-based traveler information provision and dissemination system is developed to offer a rich set of travel reliability information for the general public and traffic management and planning organizations

    Proceedings of the 4th Symposium on Management of Future Motorway and Urban Traffic Systems 2022

    Get PDF
    The 4th Symposium on Management of Future Motorway and Urban Traffic Systems (MFTS) was held in Dresden, Germany, from November 30th to December 2nd, 2022. Organized by the Chair of Traffic Process Automation (VPA) at the “Friedrich List” Faculty of Transport and Traffic Sciences of the TU Dresden, the proceedings of this conference are published as volume 9 in the Chair’s publication series “Verkehrstelematik” and contain a large part of the presented conference extended abstracts. The focus of the MFTS conference 2022 was cooperative management of multimodal transport and reflected the vision of the professorship to be an internationally recognized group in ITS research and education with the goal of optimizing the operation of multimodal transport systems. In 14 MFTS sessions, current topics in demand and traffic management, traffic control in conventional, connected and automated transport, connected and autonomous vehicles, traffic flow modeling and simulation, new and shared mobility systems, digitization, and user behavior and safety were discussed. In addition, special sessions were organized, for example on “Human aspects in traffic modeling and simulation” and “Lesson learned from Covid19 pandemic”, whose descriptions and analyses are also included in these proceedings.:1 Connected and Automated Vehicles 1.1 Traffic-based Control of Truck Platoons on Freeways 1.2 A Lateral Positioning Strategy for Connected and Automated Vehicles in Lane-free Traffic 1.3 Simulation Methods for Mixed Legacy-Autonomous Mainline Train Operations 1.4 Can Dedicated Lanes for Automated Vehicles on Urban Roads Improve Traffic Efficiency? 1.5 GLOSA System with Uncertain Green and Red Signal Phases 2 New Mobility Systems 2.1 A New Model for Electric Vehicle Mobility and Energy Consumption in Urban Traffic Networks 2.2 Shared Autonomous Vehicles Implementation for a Disrupted Public Transport Network 3 Traffic Flow and Simulation 3.1 Multi-vehicle Stochastic Fundamental Diagram Consistent with Transportations Systems Theory 3.2 A RoundD-like Roundabout Scenario in CARLA Simulator 3.3 Multimodal Performance Evaluation of Urban Traffic Control: A Microscopic Simulation Study 3.4 A MILP Framework to Solve the Sustainable System Optimum with Link MFD Functions 3.5 On How Traffic Signals Impact the Fundamental Diagrams of Urban Roads 4 Traffic Control in Conventional Traffic 4.1 Data-driven Methods for Identifying Travel Conditions Based on Traffic and Weather Characteristics 4.2 AI-based Multi-class Traffic Model Oriented to Freeway Traffic Control 4.3 Exploiting Deep Learning and Traffic Models for Freeway Traffic Estimation 4.4 Automatic Design of Optimal Actuated Traffic Signal Control with Transit Signal Priority 4.5 A Deep Reinforcement Learning Approach for Dynamic Traffic Light Control with Transit Signal Priority 4.6 Towards Efficient Incident Detection in Real-time Traffic Management 4.7 Dynamic Cycle Time in Traffic Signal of Cyclic Max-Pressure Control 5 Traffic Control with Autonomous Vehicles 5.1 Distributed Ordering and Optimization for Intersection Management with Connected and Automated Vehicles 5.2 Prioritization of an Automated Shuttle for V2X Public Transport at a Signalized Intersection – a Real-life Demonstration 6 User Behaviour and Safety 6.1 Local Traffic Safety Analyzer (LTSA) - Improved Road Safety and Optimized Signal Control for Future Urban Intersections 7 Demand and Traffic Management 7.1 A Stochastic Programming Method for OD Estimation Using LBSN Check-in Data 7.2 Delineation of Traffic Analysis Zone for Public Transportation OD Matrix Estimation Based on Socio-spatial Practices 8 Workshops 8.1 How to Integrate Human Aspects Into Engineering Science of Transport and Traffic? - a Workshop Report about Discussions on Social Contextualization of Mobility 8.2 Learning from Covid: How Can we Predict Mobility Behaviour in the Face of Disruptive Events? – How to Investigate the Mobility of the FutureDas 4. Symposium zum Management zukünftiger Autobahn- und Stadtverkehrssysteme (MFTS) fand vom 30. November bis 2. Dezember 2022 in Dresden statt und wurde vom Lehrstuhl für Verkehrsprozessautomatisierung (VPA) an der Fakultät Verkehrswissenschaften„Friedrich List“ der TU Dresden organisiert. Der Tagungsband erscheint als Band 9 in der Schriftenreihe „Verkehrstelematik“ des Lehrstuhls und enthält einen Großteil der vorgestellten Extended-Abstracts des Symposiums. Der Schwerpunkt des MFTS-Symposiums 2022 lag auf dem kooperativen Management multimodalen Verkehrs und spiegelte die Vision der Professur wider, eine international anerkannte Gruppe in der ITS-Forschung und -Ausbildung mit dem Ziel der Optimierung des Betriebs multimodaler Transportsysteme zu sein. In 14 MFTS-Sitzungen wurden aktuelle Themen aus den Bereichen Nachfrage- und Verkehrsmanagement, Verkehrssteuerung im konventionellen, vernetzten und automatisierten Verkehr, vernetzte und autonome Fahrzeuge, Verkehrsflussmodellierung und -simulation, neue und geteilte Mobilitätssysteme, Digitalisierung sowie Nutzerverhalten und Sicherheit diskutiert. Darüber hinaus wurden Sondersitzungen organisiert, beispielsweise zu „Menschlichen Aspekten bei der Verkehrsmodellierung und -simulation“ und „Lektionen aus der Covid-19-Pandemie“, deren Beschreibungen und Analysen ebenfalls in diesen Tagungsband einfließen.:1 Connected and Automated Vehicles 1.1 Traffic-based Control of Truck Platoons on Freeways 1.2 A Lateral Positioning Strategy for Connected and Automated Vehicles in Lane-free Traffic 1.3 Simulation Methods for Mixed Legacy-Autonomous Mainline Train Operations 1.4 Can Dedicated Lanes for Automated Vehicles on Urban Roads Improve Traffic Efficiency? 1.5 GLOSA System with Uncertain Green and Red Signal Phases 2 New Mobility Systems 2.1 A New Model for Electric Vehicle Mobility and Energy Consumption in Urban Traffic Networks 2.2 Shared Autonomous Vehicles Implementation for a Disrupted Public Transport Network 3 Traffic Flow and Simulation 3.1 Multi-vehicle Stochastic Fundamental Diagram Consistent with Transportations Systems Theory 3.2 A RoundD-like Roundabout Scenario in CARLA Simulator 3.3 Multimodal Performance Evaluation of Urban Traffic Control: A Microscopic Simulation Study 3.4 A MILP Framework to Solve the Sustainable System Optimum with Link MFD Functions 3.5 On How Traffic Signals Impact the Fundamental Diagrams of Urban Roads 4 Traffic Control in Conventional Traffic 4.1 Data-driven Methods for Identifying Travel Conditions Based on Traffic and Weather Characteristics 4.2 AI-based Multi-class Traffic Model Oriented to Freeway Traffic Control 4.3 Exploiting Deep Learning and Traffic Models for Freeway Traffic Estimation 4.4 Automatic Design of Optimal Actuated Traffic Signal Control with Transit Signal Priority 4.5 A Deep Reinforcement Learning Approach for Dynamic Traffic Light Control with Transit Signal Priority 4.6 Towards Efficient Incident Detection in Real-time Traffic Management 4.7 Dynamic Cycle Time in Traffic Signal of Cyclic Max-Pressure Control 5 Traffic Control with Autonomous Vehicles 5.1 Distributed Ordering and Optimization for Intersection Management with Connected and Automated Vehicles 5.2 Prioritization of an Automated Shuttle for V2X Public Transport at a Signalized Intersection – a Real-life Demonstration 6 User Behaviour and Safety 6.1 Local Traffic Safety Analyzer (LTSA) - Improved Road Safety and Optimized Signal Control for Future Urban Intersections 7 Demand and Traffic Management 7.1 A Stochastic Programming Method for OD Estimation Using LBSN Check-in Data 7.2 Delineation of Traffic Analysis Zone for Public Transportation OD Matrix Estimation Based on Socio-spatial Practices 8 Workshops 8.1 How to Integrate Human Aspects Into Engineering Science of Transport and Traffic? - a Workshop Report about Discussions on Social Contextualization of Mobility 8.2 Learning from Covid: How Can we Predict Mobility Behaviour in the Face of Disruptive Events? – How to Investigate the Mobility of the Futur

    Artificial Intelligence Applications to Critical Transportation Issues

    Full text link

    Proceedings of Abstracts 10th International Conference on Air Quality Science and Application

    Get PDF
    This 10th International Conference in Air Quality - Science and Application is being held in the elegant and vibrant city of Milan, Italy. Our local hosts are ARIANET and ARPA Lombardia both of whom play a leading role in assessing and managing air pollution in the area. The meeting builds upon the series that began at the University of Hertfordshire, UK in July 1996. Subsequent meetings have been held at the Technical University of Madrid, Spain (1999), Loutraki, Greece (2001), Charles University, Prague, Czech Republic (2003), Valencia, Spain (2005), Cyprus (2007), Istanbul, Turkey (2009) Athens, Greece (2012) and Garmisch-Partenkirchen, Germany (2014). Over the last two decades controls to limit air pollution have increased but the problem of poor air quality persists in all cities of the world. Consequently, the issue of the quality of air that we breathe remains at the forefront of societal concerns and continues to demand the attention of scientists and policy makers to reduce health impacts and to achieve sustainable development. Although urbanisation is growing in terms of population, transport, energy consumption and utilities, science has shown that impact from air pollution in cities is not restricted to local scales but depends on contributions from regional and global scales including interactions with climate change. Despite improvements in technology, users still demand robust management and assessment tools to formulate effective control policies and strategies for reducing the health impact of air pollution. The topics of papers presented at the conference reflect the diversity of scales, processes and interactions affecting air pollution and its impact on health and the environment. As usual, the conference is stimulating cross-fertilisation of ideas and cooperation between the different air pollution science and user communities. In particular, there is greater involvement of city, regional and global air pollution, climate change, users and health communities at the meeting. This international conference brings together scientists, users and policy makers from across the globe to discuss the latest scientific advances in our understanding of air pollution and its impacts on our health and environment. In addition to the scientific advances, the conference will also seek to highlight applications and developments in management strategies and assessment tools for policy and decision makers. This volume presents a collection of abstracts of papers presented at the Conference. The main themes covered in the Conference include: Air quality and impact on regional to global scales Development/application/evaluation of air quality and related models Environmental and health impact resulting from air pollution Measurement of air pollutants and process studies Source apportionment and emission models/inventories Urban meteorology Special session: Air quality impacts of the increasing use of biomass fuels Special session: Air quality management for policy support and decisions Special session: Air pollution meteorology from local to global scales Special session: Climate change and human health Special Session: Modelling and measuring non-exhaust emissions from traffic Special session: Transport related air pollution - PM and its impact on cities and across EuropeFinal Published versio
    • …
    corecore