55,084 research outputs found

    Memory-Based Shallow Parsing

    Get PDF
    We present a memory-based learning (MBL) approach to shallow parsing in which POS tagging, chunking, and identification of syntactic relations are formulated as memory-based modules. The experiments reported in this paper show competitive results, the F-value for the Wall Street Journal (WSJ) treebank is: 93.8% for NP chunking, 94.7% for VP chunking, 77.1% for subject detection and 79.0% for object detection.Comment: 8 pages, to appear in: Proceedings of the EACL'99 workshop on Computational Natural Language Learning (CoNLL-99), Bergen, Norway, June 199

    Memory-Based Shallow Parsing

    Full text link
    We present memory-based learning approaches to shallow parsing and apply these to five tasks: base noun phrase identification, arbitrary base phrase recognition, clause detection, noun phrase parsing and full parsing. We use feature selection techniques and system combination methods for improving the performance of the memory-based learner. Our approach is evaluated on standard data sets and the results are compared with that of other systems. This reveals that our approach works well for base phrase identification while its application towards recognizing embedded structures leaves some room for improvement

    Using Neural Networks for Relation Extraction from Biomedical Literature

    Full text link
    Using different sources of information to support automated extracting of relations between biomedical concepts contributes to the development of our understanding of biological systems. The primary comprehensive source of these relations is biomedical literature. Several relation extraction approaches have been proposed to identify relations between concepts in biomedical literature, namely, using neural networks algorithms. The use of multichannel architectures composed of multiple data representations, as in deep neural networks, is leading to state-of-the-art results. The right combination of data representations can eventually lead us to even higher evaluation scores in relation extraction tasks. Thus, biomedical ontologies play a fundamental role by providing semantic and ancestry information about an entity. The incorporation of biomedical ontologies has already been proved to enhance previous state-of-the-art results.Comment: Artificial Neural Networks book (Springer) - Chapter 1

    Keystroke dynamics as signal for shallow syntactic parsing

    Full text link
    Keystroke dynamics have been extensively used in psycholinguistic and writing research to gain insights into cognitive processing. But do keystroke logs contain actual signal that can be used to learn better natural language processing models? We postulate that keystroke dynamics contain information about syntactic structure that can inform shallow syntactic parsing. To test this hypothesis, we explore labels derived from keystroke logs as auxiliary task in a multi-task bidirectional Long Short-Term Memory (bi-LSTM). Our results show promising results on two shallow syntactic parsing tasks, chunking and CCG supertagging. Our model is simple, has the advantage that data can come from distinct sources, and produces models that are significantly better than models trained on the text annotations alone.Comment: In COLING 201

    Decorrelation and shallow semantic patterns for distributional clustering of nouns and verbs

    Get PDF
    Distributional approximations to lexical semantics are very useful not only in helping the creation of lexical semantic resources (Kilgariff et al., 2004; Snow et al., 2006), but also when directly applied in tasks that can benefit from large-coverage semantic knowledge such as coreference resolution (Poesio et al., 1998; Gasperin and Vieira, 2004; Versley, 2007), word sense disambiguation (Mc- Carthy et al., 2004) or semantical role labeling (Gordon and Swanson, 2007). We present a model that is built from Webbased corpora using both shallow patterns for grammatical and semantic relations and a window-based approach, using singular value decomposition to decorrelate the feature space which is otherwise too heavily influenced by the skewed topic distribution of Web corpora
    corecore