18 research outputs found

    A Polyhedral Study of Mixed 0-1 Set

    Get PDF
    We consider a variant of the well-known single node fixed charge network flow set with constant capacities. This set arises from the relaxation of more general mixed integer sets such as lot-sizing problems with multiple suppliers. We provide a complete polyhedral characterization of the convex hull of the given set

    Seeking multiple solutions:an updated survey on niching methods and their applications

    Get PDF
    Multi-Modal Optimization (MMO) aiming to locate multiple optimal (or near-optimal) solutions in a single simulation run has practical relevance to problem solving across many fields. Population-based meta-heuristics have been shown particularly effective in solving MMO problems, if equipped with specificallydesigned diversity-preserving mechanisms, commonly known as niching methods. This paper provides an updated survey on niching methods. The paper first revisits the fundamental concepts about niching and its most representative schemes, then reviews the most recent development of niching methods, including novel and hybrid methods, performance measures, and benchmarks for their assessment. Furthermore, the paper surveys previous attempts at leveraging the capabilities of niching to facilitate various optimization tasks (e.g., multi-objective and dynamic optimization) and machine learning tasks (e.g., clustering, feature selection, and learning ensembles). A list of successful applications of niching methods to real-world problems is presented to demonstrate the capabilities of niching methods in providing solutions that are difficult for other optimization methods to offer. The significant practical value of niching methods is clearly exemplified through these applications. Finally, the paper poses challenges and research questions on niching that are yet to be appropriately addressed. Providing answers to these questions is crucial before we can bring more fruitful benefits of niching to real-world problem solving

    Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions

    Get PDF
    Abstract not availableH.R. Maier, Z. Kapelan, Kasprzyk, J. Kollat, L.S. Matott, M.C. Cunha, G.C. Dandy, M.S. Gibbs, E. Keedwell, A. Marchi, A. Ostfeld, D. Savic, D.P. Solomatine, J.A. Vrugt, A.C. Zecchin, B.S. Minsker, E.J. Barbour, G. Kuczera, F. Pasha, A. Castelletti, M. Giuliani, P.M. Ree

    A genetic programming hyper-heuristic approach to automated packing

    Get PDF
    This thesis presents a programme of research which investigated a genetic programming hyper-heuristic methodology to automate the heuristic design process for one, two and three dimensional packing problems. Traditionally, heuristic search methodologies operate on a space of potential solutions to a problem. In contrast, a hyper-heuristic is a heuristic which searches a space of heuristics, rather than a solution space directly. The majority of hyper-heuristic research papers, so far, have involved selecting a heuristic, or sequence of heuristics, from a set pre-defined by the practitioner. Less well studied are hyper-heuristics which can create new heuristics, from a set of potential components. This thesis presents a genetic programming hyper-heuristic which makes it possible to automatically generate heuristics for a wide variety of packing problems. The genetic programming algorithm creates heuristics by intelligently combining components. The evolved heuristics are shown to be highly competitive with human created heuristics. The methodology is first applied to one dimensional bin packing, where the evolved heuristics are analysed to determine their quality, specialisation, robustness, and scalability. Importantly, it is shown that these heuristics are able to be reused on unseen problems. The methodology is then applied to the two dimensional packing problem to determine if automatic heuristic generation is possible for this domain. The three dimensional bin packing and knapsack problems are then addressed. It is shown that the genetic programming hyper-heuristic methodology can evolve human competitive heuristics, for the one, two, and three dimensional cases of both of these problems. No change of parameters or code is required between runs. This represents the first packing algorithm in the literature able to claim human competitive results in such a wide variety of packing domains
    corecore