254 research outputs found

    The intersection of evolutionary computation and explainable AI.

    Get PDF
    In the past decade, Explainable Artificial Intelligence (XAI) has attracted a great interest in the research community, motivated by the need for explanations in critical AI applications. Some recent advances in XAI are based on Evolutionary Computation (EC) techniques, such as Genetic Programming. We call this trend EC for XAI. We argue that the full potential of EC methods has not been fully exploited yet in XAI, and call the community for future efforts in this field. Likewise, we find that there is a growing concern in EC regarding the explanation of population-based methods, i.e., their search process and outcomes. While some attempts have been done in this direction (although, in most cases, those are not explicitly put in the context of XAI), we believe that there are still several research opportunities and open research questions that, in principle, may promote a safer and broader adoption of EC in real-world applications. We call this trend XAI within EC. In this position paper, we briefly overview the main results in the two above trends, and suggest that the EC community may play a major role in the achievement of XAI

    Business analytics in industry 4.0: a systematic review

    Get PDF
    Recently, the term “Industry 4.0” has emerged to characterize several Information Technology and Communication (ICT) adoptions in production processes (e.g., Internet-of-Things, implementation of digital production support information technologies). Business Analytics is often used within the Industry 4.0, thus incorporating its data intelligence (e.g., statistical analysis, predictive modelling, optimization) expert system component. In this paper, we perform a Systematic Literature Review (SLR) on the usage of Business Analytics within the Industry 4.0 concept, covering a selection of 169 papers obtained from six major scientific publication sources from 2010 to March 2020. The selected papers were first classified in three major types, namely, Practical Application, Reviews and Framework Proposal. Then, we analysed with more detail the practical application studies which were further divided into three main categories of the Gartner analytical maturity model, Descriptive Analytics, Predictive Analytics and Prescriptive Analytics. In particular, we characterized the distinct analytics studies in terms of the industry application and data context used, impact (in terms of their Technology Readiness Level) and selected data modelling method. Our SLR analysis provides a mapping of how data-based Industry 4.0 expert systems are currently used, disclosing also research gaps and future research opportunities.The work of P. Cortez was supported by FCT - Fundação para a CiĂȘncia e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. We would like to thank to the three anonymous reviewers for their helpful suggestions

    A Multilabel Approach for Fault Detection and Classification of Transmission Lines using Binary Relevance

    Get PDF
    In Contemporary automation systems, Fault detection and classification of electrical transmission lines in grid systems are given top priority. The broad application of Machine Learning (ML) methods has enabled the substitute of conventional methods of fault identification and classification. These methods are more effective ones that can identify faults early on using a significant quantity of sensory data. So detecting simultaneous failures is difficult in the context of distracting the noise and several faults in the transmission lines. This study contributes by offering a unique way for concurrently detecting and classifying several faults using a multilabel classification approach based on binary relevance classifiers. The proposed binary relevance multilabel detection and classification models’ performances are examined. Under both ideal and problematic circumstances, faults in the dataset are collected. A variety of multilabel fault types detection and classification determines the suggested method’s effectiveness

    A Review of Classification Problems and Algorithms in Renewable Energy Applications

    Get PDF
    Classification problems and their corresponding solving approaches constitute one of the fields of machine learning. The application of classification schemes in Renewable Energy (RE) has gained significant attention in the last few years, contributing to the deployment, management and optimization of RE systems. The main objective of this paper is to review the most important classification algorithms applied to RE problems, including both classical and novel algorithms. The paper also provides a comprehensive literature review and discussion on different classification techniques in specific RE problems, including wind speed/power prediction, fault diagnosis in RE systems, power quality disturbance classification and other applications in alternative RE systems. In this way, the paper describes classification techniques and metrics applied to RE problems, thus being useful both for researchers dealing with this kind of problem and for practitioners of the field
    • 

    corecore