240 research outputs found

    Collaborative Learning Team Formation Considering Team Roles: An Evolutionary Approach based on Adaptive Crossover, Mutation and Simulated Annealing

    Get PDF
    In this paper, a hybrid evolutionary algorithm is proposed to solve a collaborative learning team formation problem in higher education contexts. This problem involves a grouping criterion evaluated satisfactorily in a great variety of higher education courses as well as training programs. This criterion is based on the team roles of students, and implies forming well-balanced teams respecting the team roles of their members. The hybrid evolutionary algorithm uses adaptive crossover, mutation and simulated annealing processes, in order to improve the performance of the evolutionary search. These processes adapt their behavior regarding the state of the evolutionary search. The performance of the hybrid evolutionary algorithm is exhaustively evaluated on data sets with very different complexity levels, and after that, is compared with those of the algorithms previously reported in the literature to solve the addressed problem. The results obtained from the performance comparison indicate that the hybrid evolutionary algorithm significantly outperforms the algorithms previously reported, in both effectiveness and efficiency.Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Sistemas Tandil; ArgentinaFil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Sistemas Tandil; Argentin

    An artificial intelligence tool for heterogeneous team formation in the classroom

    Get PDF
    Nowadays, there is increasing interest in the development of teamwork skills in the educational context. This growing interest is motivated by its pedagogical effectiveness and the fact that, in labour contexts, enterprises organize their employees in teams to carry out complex projects. Despite its crucial importance in the classroom and industry, there is a lack of support for the team formation process. Not only do many factors influence team performance, but the problem becomes exponentially costly if teams are to be optimized. In this article, we propose a tool whose aim it is to cover such a gap. It combines artificial intelligence techniques such as coalition structure generation, Bayesian learning, and Belbin's role theory to facilitate the generation of working groups in an educational context. This tool improves current state of the art proposals in three ways: i) it takes into account the feedback of other teammates in order to establish the most predominant role of a student instead of self-perception questionnaires; ii) it handles uncertainty with regard to each student's predominant team role; iii) it is iterative since it considers information from several interactions in order to improve the estimation of role assignments. We tested the performance of the proposed tool in an experiment involving students that took part in three different team activities. The experiments suggest that the proposed tool is able to improve different teamwork aspects such as team dynamics and student satisfaction

    Inteligencia artificial y aprendizaje colaborativo asistido por computadora en la programación: un estudio de mapeo sistemático

    Get PDF
    Objective: The Computer-Supported Collaborative Learning (CSCL) approach integrates artificial intelligence (AI) to enhance the learning process through collaboration and information and communication technologies (ICTs). In this sense, innovative and effective strategies could be designed for learning computer programming. This paper presents a systematic mapping study from 2009 to 2021, which shows how the integration of CSCL and AI supports the learning process in programming courses. Methodology: This study was conducted by reviewing data from different bibliographic sources such as Scopus, Web of Science (WoS), ScienceDirect, and repositories of the GitHub platform. It employs a quantitative methodological approach, where the results are represented through technological maps that show the following aspects: i) the programming languages used for CSCL and AI software development; ii) CSCL software technology and the evolution of AI; and iii) the ACM classifications, research topics, artificial intelligence techniques, and CSCL strategies. Results: The results of this research help to understand the benefits and challenges of using the CSCL and AI approach for learning computer programming, identifying some strategies and tools to improve the process in programming courses (e.g., the implementation of the CSCL approach strategies used to form groups, others to evaluate, and others to provide feedback); as well as to control the process and measure student results, using virtual judges for automatic code evaluation, profile identification, code analysis, teacher simulation, active learning activities, and interactive environments, among others. However, for each process, there are still open research questions. Conclusions: This work discusses the integration of CSCL and AI to enhance learning in programming courses and how it supports students' education process. No model integrates the CSCL approach with AI techniques, which allows implementing learning activities and, at the same time, observing and analyzing the evolution of the system and how its users (students) improve their learning skills with regard to programming. In addition, the different tools found in this paper could be explored by professors and institutions, or new technologies could be developed from them.Objetivo: El enfoque de aprendizaje colaborativo asistido por computadora (CSCL) integra la inteligencia artificial (IA) para mejorar el proceso de aprendizaje a través de la colaboración y las tecnologías de la información y la comunicación (TICs). En este sentido, se podrían diseñar estrategias innovadoras y efectivas para el aprendizaje de la programación de computadoras. Este artículo presenta un estudio sistemático de mapeo de los años 2009 a 2021, el cual muestra cómo la integración del CSCL y la IA apoya el proceso de aprendizaje en cursos de programación. Metodología: Este estudio se realizó mediante una revisión de datos proveniente de distintas fuentes bibliográficas como Scopus, Web of Science (WoS), ScienceDirect y repositorios de la plataforma GitHub. El trabajo emplea un enfoque metodológico cuantitativo, en el cual los resultados se representan a través de mapas tecnológicos que muestran los siguientes aspectos: i) los lenguajes de programación utilizados para el desarrollo de software de CSCL e IA; ii) la tecnología de software CSCL y la evolución de la IA; y iii) las clasificaciones, los temas de investigación, las técnicas de inteligencia artificial y las estrategias de CSCL de la ACM. Resultados: Los resultados de esta investigación ayudan a entender los beneficios y retos de usar el enfoque de CSCL e IA para el aprendizaje de la programación de computadoras, identificando algunas estrategias y herramientas para mejorar el proceso en cursos de programación (e.g., La implementación de estrategias del enfoque CSCL utilizadas para formar grupos, de otras para evaluar y de otras para brindar retroalimentación); así como para monitorear el proceso y medir los resultados de los estudiantes utilizando jueces virtuales para la evaluación automática del código, identificación de perfiles, análisis de código, simulación de profesores, actividades de aprendizaje activo y entornos interactivos, entre otros. Sin embargo, aún hay preguntas investigación por resolver para cada proceso. Conclusiones: Este trabajo discute la integración del CSCL y la IA para mejorar el aprendizaje en cursos de programación y cómo esta apoya el proceso educativo de los estudiantes. Ningún modelo integra el enfoque CSCL con técnicas de IA, lo cual permite implementar actividades de aprendizaje y, al mismo tiempo, observar y analizar la evolución del sistema y de la manera en que sus usuarios (estudiantes) mejoran sus habilidades de aprendizaje con respecto a la programación. Adicionalmente, las diferentes herramientas encontradas en este artículo podrían ser exploradas por profesores e instituciones, o podrían desarrollarse nuevas tecnologías a partir de ellas

    A Computational Model of Memetic Evolution: Optimizing Collective Intelligence

    Get PDF
    The purpose of this study was to create an adaptive agent based simulation modeling the processes of creative collaboration. This model aided in the development of a new evolutionary based framework through which education scholars, academics, and professionals in all disciplines and industries can work to optimize their collective ability to find creative solutions to complex problems. The basic premise follows that the process of idea exchange, parallels the role sexual reproduction in biological evolution and is essential to society\u27s collective ability to solve complex problems. The study outlined a set of assumptions used to develop a new theory of collective intelligence. These assumptions were then translated into design requirements that were designated as parameters for a computational simulation that utilizes two types of machine learning algorithms. This model was developed, and 200 simulations were run for each of 48 different combinations of four independent variables for a total of 9,600 simulations. Statistical analysis of the data revealed a number of patterns enhancing the simulation agents\u27 collective problem solving abilities. Most notably, agents\u27 collective problem solving abilities were optimized when idea exchange between agents was balanced with individual agent time contemplating new creative strategies. Additionally, the agents\u27 collective problem solving abilities were optimized when simulation constraints did not force the agents to converge upon one potential solution

    Design Thinking as Heterogeneous Engineering: Emerging Design Methods in Meme Warfare

    Get PDF
    The shift of production of material artefacts to digital and online making has been greatly disruptive to material culture. Design has typically concerned itself with studying material cultures in order to develop a better understanding of the ways people go about shaping the world around them. This thesis contributes to this space by looking at an emerging form of artefact generation in digital and online making, namely, visual communication design in online information warfare. Developing understanding of participation in this space reveals possible trajectory of working with material culture as it increasingly becomes digital and online. Marshall McLuhan wrote in 1970 that “World War 3 is a guerrilla information war with no division between military and civilian participation” (p. 66), anticipating ubiquitous symmetrical capacity of users as both producers and consumers of information through communication technology. This space has emerged as our digital and online environment, and prominent in this environment are images with characteristics of visual communication design. It appears that the trajectory of visual communication design from the late 19t h century is moving toward ubiquitous making and exchanging of visual communication, as anyone with a smartphone can make an internet meme with worldwide reach and influence

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    Reframing the systemic approach to complex organizations as intangible portfolios

    Get PDF
    The aim of this paper is to pave the way towards the inclusion of mainstream sociological approaches (based on Luhmann’s approach) for the studies of firms-organizations. In social sciences we can observe that the theoretic consequences of a paradigm shift is signiicantly represented by the evolution of systemic thinking from Parsons to Luhmann. This shift implies the change from the vision of systemic organizations as “structures” to that of systemic organizations as “communication flows”. The milestone of systemic approach in management maybe found in the research and applied works of Anthony Staford Beer with his Viable System Model (VSM) that today faced a relevant reconiguration by Golinelli and the Italian school on Viable Systemic Approach (VSA). The paradigm shift in this ield has been smoother than in sociology, and didn’t imply the discard of the concept of organization as a structure. This because, in management sciences, the perspective and, consequently, the subject of study is the organization and its structure. We think this paradigm shift is possible also in management sciences, if we consider the whole organization as a structured information low creating a dematerialized structure. Our research question is: “Is it possible to apply in business sciences the fundamental concepts that caused the paradigm shift in sociology?” To answer to this question we discuss about ontology of the firm and of the concept of value in order to understand to what extent intangible communication lows are called upon to be involved in a new deinition of structure

    Handbook of Computational Intelligence in Manufacturing and Production Management

    Get PDF
    Artificial intelligence (AI) is simply a way of providing a computer or a machine to think intelligently like human beings. Since human intelligence is a complex abstraction, scientists have only recently began to understand and make certain assumptions on how people think and to apply these assumptions in order to design AI programs. It is a vast knowledge base discipline that covers reasoning, machine learning, planning, intelligent search, and perception building. Traditional AI had the limitations to meet the increasing demand of search, optimization, and machine learning in the areas of large, biological, and commercial database information systems and management of factory automation for different industries such as power, automobile, aerospace, and chemical plants. The drawbacks of classical AI became more pronounced due to successive failures of the decade long Japanese project on fifth generation computing machines. The limitation of traditional AI gave rise to development of new computational methods in various applications of engineering and management problems. As a result, these computational techniques emerged as a new discipline called computational intelligence (CI)

    Management, Technology and Learning for Individuals, Organisations and Society in Turbulent Environments

    Get PDF
    This book presents the collection of fifty papers which were presented in the Second International Conference on BUSINESS SUSTAINABILITY 2011 - Management, Technology and Learning for Individuals, Organisations and Society in Turbulent Environments , held in Póvoa de Varzim, Portugal, from 22ndto 24thof June, 2011.The main motive of the meeting was growing awareness of the importance of the sustainability issue. This importance had emerged from the growing uncertainty of the market behaviour that leads to the characterization of the market, i.e. environment, as turbulent. Actually, the characterization of the environment as uncertain and turbulent reflects the fact that the traditional technocratic and/or socio-technical approaches cannot effectively and efficiently lead with the present situation. In other words, the rise of the sustainability issue means the quest for new instruments to deal with uncertainty and/or turbulence. The sustainability issue has a complex nature and solutions are sought in a wide range of domains and instruments to achieve and manage it. The domains range from environmental sustainability (referring to natural environment) through organisational and business sustainability towards social sustainability. Concerning the instruments for sustainability, they range from traditional engineering and management methodologies towards “soft” instruments such as knowledge, learning, and creativity. The papers in this book address virtually whole sustainability problems space in a greater or lesser extent. However, although the uncertainty and/or turbulence, or in other words the dynamic properties, come from coupling of management, technology, learning, individuals, organisations and society, meaning that everything is at the same time effect and cause, we wanted to put the emphasis on business with the intention to address primarily companies and their businesses. Due to this reason, the main title of the book is “Business Sustainability 2.0” but with the approach of coupling Management, Technology and Learning for individuals, organisations and society in Turbulent Environments. Also, the notation“2.0” is to promote the publication as a step further from our previous publication – “Business Sustainability I” – as would be for a new version of software. Concerning the Second International Conference on BUSINESS SUSTAINABILITY, its particularity was that it had served primarily as a learning environment in which the papers published in this book were the ground for further individual and collective growth in understanding and perception of sustainability and capacity for building new instruments for business sustainability. In that respect, the methodology of the conference work was basically dialogical, meaning promoting dialog on the papers, but also including formal paper presentations. In this way, the conference presented a rich space for satisfying different authors’ and participants’ needs. Additionally, promoting the widest and global learning environment and participation, in accordance with the Conference's assumed mission to promote Proactive Generative Collaborative Learning, the Conference Organisation shares/puts open to the community the papers presented in this book, as well as the papers presented on the previous Conference(s). These papers can be accessed from the conference webpage (http://labve.dps.uminho.pt/bs11). In these terms, this book could also be understood as a complementary instrument to the Conference authors’ and participants’, but also to the wider readerships’ interested in the sustainability issues. The book brought together 107 authors from 11 countries, namely from Australia, Belgium, Brazil, Canada, France, Germany, Italy, Portugal, Serbia, Switzerland, and United States of America. The authors “ranged” from senior and renowned scientists to young researchers providing a rich and learning environment. At the end, the editors hope, and would like, that this book to be useful, meeting the expectation of the authors and wider readership and serving for enhancing the individual and collective learning, and to incentive further scientific development and creation of new papers. Also, the editors would use this opportunity to announce the intention to continue with new editions of the conference and subsequent editions of accompanying books on the subject of BUSINESS SUSTAINABILITY, the third of which is planned for year 2013.info:eu-repo/semantics/publishedVersio

    Association of Architecture Schools in Australasia

    Get PDF
    "Techniques and Technologies: Transfer and Transformation", proceedings of the 2007 AASA Conference held September 27-29, 2007, at the School of Architecture, UTS
    corecore