237 research outputs found

    An updated annotated bibliography on arc routing problems

    Get PDF
    The number of arc routing publications has increased significantly in the last decade. Such an increase justifies a second annotated bibliography, a sequel to Corberán and Prins (Networks 56 (2010), 50–69), discussing arc routing studies from 2010 onwards. These studies are grouped into three main sections: single vehicle problems, multiple vehicle problems and applications. Each main section catalogs problems according to their specifics. Section 2 is therefore composed of four subsections, namely: the Chinese Postman Problem, the Rural Postman Problem, the General Routing Problem (GRP) and Arc Routing Problems (ARPs) with profits. Section 3, devoted to the multiple vehicle case, begins with three subsections on the Capacitated Arc Routing Problem (CARP) and then delves into several variants of multiple ARPs, ending with GRPs and problems with profits. Section 4 is devoted to applications, including distribution and collection routes, outdoor activities, post-disaster operations, road cleaning and marking. As new applications emerge and existing applications continue to be used and adapted, the future of arc routing research looks promising.info:eu-repo/semantics/publishedVersio

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    Workload Equity in Vehicle Routing Problems: A Survey and Analysis

    Full text link
    Over the past two decades, equity aspects have been considered in a growing number of models and methods for vehicle routing problems (VRPs). Equity concerns most often relate to fairly allocating workloads and to balancing the utilization of resources, and many practical applications have been reported in the literature. However, there has been only limited discussion about how workload equity should be modeled in VRPs, and various measures for optimizing such objectives have been proposed and implemented without a critical evaluation of their respective merits and consequences. This article addresses this gap with an analysis of classical and alternative equity functions for biobjective VRP models. In our survey, we review and categorize the existing literature on equitable VRPs. In the analysis, we identify a set of axiomatic properties that an ideal equity measure should satisfy, collect six common measures, and point out important connections between their properties and those of the resulting Pareto-optimal solutions. To gauge the extent of these implications, we also conduct a numerical study on small biobjective VRP instances solvable to optimality. Our study reveals two undesirable consequences when optimizing equity with nonmonotonic functions: Pareto-optimal solutions can consist of non-TSP-optimal tours, and even if all tours are TSP optimal, Pareto-optimal solutions can be workload inconsistent, i.e. composed of tours whose workloads are all equal to or longer than those of other Pareto-optimal solutions. We show that the extent of these phenomena should not be underestimated. The results of our biobjective analysis are valid also for weighted sum, constraint-based, or single-objective models. Based on this analysis, we conclude that monotonic equity functions are more appropriate for certain types of VRP models, and suggest promising avenues for further research.Comment: Accepted Manuscrip

    Genetic programming hyper-heuristic with vehicle collaboration for uncertain capacitated arc routing problem

    Get PDF
    Due to its direct relevance to post-disaster operations, meter reading and civil refuse collection, the Uncertain Capacitated Arc Routing Problem (UCARP) is an important optimisation problem. Stochastic models are critical to study as they more accurately represent the real world than their deterministic counterparts. Although there have been extensive studies in solving routing problems under uncertainty, very few have considered UCARP, and none consider collaboration between vehicles to handle the negative effects of uncertainty. This article proposes a novel Solution Construction Procedure (SCP) that generates solutions to UCARP within a collaborative, multi-vehicle framework. It consists of two types of collaborative activities: one when a vehicle unexpectedly expends capacity (route failure), and the other during the refill process. Then, we propose a Genetic Programming Hyper-Heuristic (GPHH) algorithm to evolve the routing policy used within the collaborative framework. The experimental studies show that the new heuristic with vehicle collaboration and GP-evolved routing policy significantly outperforms the compared state-of-the-art algorithms on commonly studied test problems. This is shown to be especially true on instances with larger numbers of tasks and vehicles. This clearly shows the advantage of vehicle collaboration in handling the uncertain environment, and the effectiveness of the newly proposed algorithm

    Efficient routing of snow removal vehicles

    Get PDF
    This research addresses the problem of finding a minimum cost set of routes for vehicles in a road network subject to some constraints. Extensions, such as multiple service requirements, and mixed networks have been considered. Variations of this problem exist in many practical applications such as snow removal, refuse collection, mail delivery, etc. An exact algorithm was developed using integer programming to solve small size problems. Since the problem is NP-hard, a heuristic algorithm needs to be developed. An algorithm was developed based on the Greedy Randomized Adaptive Search Procedure (GRASP) heuristic, in which each replication consists of applying a construction heuristic to find feasible and good quality solutions, followed by a local search heuristic. A simulated annealing heuristic was developed to improve the solutions obtained from the construction heuristic. The best overall solution was selected from the results of several replications. The heuristic was tested on four sets of problem instances (total of 115 instances) obtained from the literature. The simulated annealing heuristic was able to achieve average improvements of up to 26.36% over the construction results on these problem instances. The results obtained with the developed heuristic were compared to the results obtained with recent heuristics developed by other authors. The developed heuristic improved the best-known solution found by other authors on 18 of the 115 instances and matched the results on 89 of those instances. It worked specially better with larger problems. The average deviations to known lower bounds for all four datasets were found to range between 0.21 and 2.61%

    Routing Applications in Newspaper Delivery

    Get PDF
    -The goal of this report is to give an up-to-date account of routing applications in the newspaper business. We describe the newspaper supply chain, and focus on the “last mile” distribution that has been advocated as an application of arc routing in the literature. A literature survey is provided, followed by a discussion of the arc routing model and its adequacy to newspaper applications. A more general and normally more adequate model: The Node, Edge, and Arc Routing Problem, is discussed. Characteristics of routing problems in carrier delivery are presented, together with a case study from the development of a web-based route design and revision system. Finally, summary, conclusions, and prospects for the future are given

    Algoritmos e formulações matemáticas para problemas de roteamento em arcos

    Get PDF
    Orientador: Fábio Luiz UsbertiTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Problemas de roteamento em arcos têm por objetivo determinar rotas de custo mínimo que visitam um subconjunto de arcos de um grafo, com uma ou mais restrições adicionais. Esta tese estuda três problemas NP-difíceis de roteamento em arcos: (1) o problema de roteamento em arcos capacitado (CARP); (2) o problema de roteamento em arcos capacitado e aberto (OCARP); e (3) o problema do carteiro chinês com cobertura (CCPP). Apresentamos formulações matemáticas e métodos exatos e heurísticos para tratar computacionalmente esses problemas: (i) uma heurística construtiva gulosa e randomizada é proposta para o CARP; (ii) uma metaheurística de algoritmos genéticos híbrido e dois métodos de limitantes inferiores por programação linear inteira, um branch-and-cut e um baseado em redes de fluxos, são propostos para o OCARP; e (iii) um método exato branch-and-cut com desigualdades válidas e uma heurística construtiva são propostos para o CCPP. Extensivos experimentos computacionais utilizando instâncias de benchmark foram executados para demonstrar o desempenho dos métodos propostos em relação aos métodos da literatura, considerando tanto a qualidade das soluções obtidas quanto o tempo de processamento. Nossos resultados mostram que os métodos propostos são estado da arte. Os problemas estudados apresentam aplicações práticas relevantes: o CARP tem aplicações em coleta de lixo urbano e remoção de neve de estradas; o OCARP tem aplicações em roteamento de leituristas e na definição de caminhos de corte em chapas metálicas; e o CCPP tem aplicações em roteamento de leituristas com o uso de tecnologia wireless. A solução desses problemas remete à diminuição de custos logísticos, melhorando a competitividade das empresasAbstract: Arc routing problems aim to find minimum cost routes that visit a subset of arcs of a graph, with one or more side constraints. This thesis studies three NP-hard arc routing problems: (1) the capacitated arc routing problem (CARP); (2) the open capacitated arc routing problem (OCARP); and (3) the covering Chinese postman problem (CCPP). We present mathematical formulations and heuristic and exact methods to computationally solve these problems: (i) a greedy and randomized constructive heuristic is proposed for the CARP; (ii) a hybrid genetic algorithm metaheuristic and two linear integer programming lower bound methods, one based on branch-and-cut and one based on flow networks, are proposed for the OCARP; and (iii) an exact branch-and-cut method with valid inequalities and a constructive heuristic are proposed for the CCPP. Extensive computational experiments using benchmark instances were performed to demonstrate the performance of the proposed methods in comparison to the previous methods, regarding both quality of solutions and processing time. Our results show that the proposed methods are state-of-the-art. The studied problems have many relevant practical applications: the CARP has applications on urban waste collection and snow removal; the OCARP has applications on the routing of meter readers and the cutting of metal sheets; and last, the CCPP has applications on automated meter readers routing. The solution of these problems leads to the reduction of logistics costs, improving businesses competitivenessDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação2016/00315-0FAPES
    corecore