11,007 research outputs found

    A Measurement-based Analysis of the Energy Consumption of Data Center Servers

    Full text link
    Energy consumption is a growing issue in data centers, impacting their economic viability and their public image. In this work we empirically characterize the power and energy consumed by different types of servers. In particular, in order to understand the behavior of their energy and power consumption, we perform measurements in different servers. In each of them, we exhaustively measure the power consumed by the CPU, the disk, and the network interface under different configurations, identifying the optimal operational levels. One interesting conclusion of our study is that the curve that defines the minimal CPU power as a function of the load is neither linear nor purely convex as has been previously assumed. Moreover, we find that the efficiency of the various server components can be maximized by tuning the CPU frequency and the number of active cores as a function of the system and network load, while the block size of I/O operations should be always maximized by applications. We also show how to estimate the energy consumed by an application as a function of some simple parameters, like the CPU load, and the disk and network activity. We validate the proposed approach by accurately estimating the energy of a map-reduce computation in a Hadoop platform

    Computing server power modeling in a data center: survey,taxonomy and performance evaluation

    Full text link
    Data centers are large scale, energy-hungry infrastructure serving the increasing computational demands as the world is becoming more connected in smart cities. The emergence of advanced technologies such as cloud-based services, internet of things (IoT) and big data analytics has augmented the growth of global data centers, leading to high energy consumption. This upsurge in energy consumption of the data centers not only incurs the issue of surging high cost (operational and maintenance) but also has an adverse effect on the environment. Dynamic power management in a data center environment requires the cognizance of the correlation between the system and hardware level performance counters and the power consumption. Power consumption modeling exhibits this correlation and is crucial in designing energy-efficient optimization strategies based on resource utilization. Several works in power modeling are proposed and used in the literature. However, these power models have been evaluated using different benchmarking applications, power measurement techniques and error calculation formula on different machines. In this work, we present a taxonomy and evaluation of 24 software-based power models using a unified environment, benchmarking applications, power measurement technique and error formula, with the aim of achieving an objective comparison. We use different servers architectures to assess the impact of heterogeneity on the models' comparison. The performance analysis of these models is elaborated in the paper
    • …
    corecore