158 research outputs found

    A geographic knowledge discovery approach to property valuation

    Get PDF
    This thesis involves an investigation of how knowledge discovery can be applied in the area Geographic Information Science. In particular, its application in the area of property valuation in order to reveal how different spatial entities and their interactions affect the price of the properties is explored. This approach is entirely data driven and does not require previous knowledge of the area applied. To demonstrate this process, a prototype system has been designed and implemented. It employs association rule mining and associative classification algorithms to uncover any existing inter-relationships and perform the valuation. Various algorithms that perform the above tasks have been proposed in the literature. The algorithm developed in this work is based on the Apriori algorithm. It has been however, extended with an implementation of a ‘Best Rule’ classification scheme based on the Classification Based on Associations (CBA) algorithm. For the modelling of geographic relationships a graph-theoretic approach has been employed. Graphs have been widely used as modelling tools within the geography domain, primarily for the investigation of network-type systems. In the current context, the graph reflects topological and metric relationships between the spatial entities depicting general spatial arrangements. An efficient graph search algorithm has been developed, based on the Djikstra shortest path algorithm that enables the investigation of relationships between spatial entities beyond first degree connectivity. A case study with data from three central London boroughs has been performed to validate the methodology and algorithms, and demonstrate its effectiveness for computer aided property valuation. In addition, through the case study, the influence of location in the value of properties in those boroughs has been examined. The results are encouraging as they demonstrate the effectiveness of the proposed methodology and algorithms, provided that the data is appropriately pre processed and is of high quality

    Proceedings of the SAB'06 Workshop on Adaptive Approaches for Optimizing Player Satisfaction in Computer and Physical Games

    Get PDF
    These proceedings contain the papers presented at the Workshop on Adaptive approaches for Optimizing Player Satisfaction in Computer and Physical Games held at the Ninth international conference on the Simulation of Adaptive Behavior (SAB’06): From Animals to Animats 9 in Rome, Italy on 1 October 2006. We were motivated by the current state-of-the-art in intelligent game design using adaptive approaches. Artificial Intelligence (AI) techniques are mainly focused on generating human-like and intelligent character behaviors. Meanwhile there is generally little further analysis of whether these behaviors contribute to the satisfaction of the player. The implicit hypothesis motivating this research is that intelligent opponent behaviors enable the player to gain more satisfaction from the game. This hypothesis may well be true; however, since no notion of entertainment or enjoyment is explicitly defined, there is therefore little evidence that a specific character behavior generates enjoyable games. Our objective for holding this workshop was to encourage the study, development, integration, and evaluation of adaptive methodologies based on richer forms of humanmachine interaction for augmenting gameplay experiences for the player. We wanted to encourage a dialogue among researchers in AI, human-computer interaction and psychology disciplines who investigate dissimilar methodologies for improving gameplay experiences. We expected that this workshop would yield an understanding of state-ofthe- art approaches for capturing and augmenting player satisfaction in interactive systems such as computer games. Our invited speaker was Hakon Steinø, Technical Producer of IO-Interactive, who discussed applied AI research at IO-Interactive, portrayed the future trends of AI in computer game industry and debated the use of academic-oriented methodologies for augmenting player satisfaction. The sessions of presentations and discussions where classified into three themes: Adaptive Learning, Examples of Adaptive Games and Player Modeling. The Workshop Committee did a great job in providing suggestions and informative reviews for the submissions; thank you! This workshop was in part supported by the Danish National Research Council (project no: 274-05-0511). Finally, thanks to all the participants; we hope you found this to be useful!peer-reviewe

    On Cognitive Preferences and the Plausibility of Rule-based Models

    Get PDF
    It is conventional wisdom in machine learning and data mining that logical models such as rule sets are more interpretable than other models, and that among such rule-based models, simpler models are more interpretable than more complex ones. In this position paper, we question this latter assumption by focusing on one particular aspect of interpretability, namely the plausibility of models. Roughly speaking, we equate the plausibility of a model with the likeliness that a user accepts it as an explanation for a prediction. In particular, we argue that, all other things being equal, longer explanations may be more convincing than shorter ones, and that the predominant bias for shorter models, which is typically necessary for learning powerful discriminative models, may not be suitable when it comes to user acceptance of the learned models. To that end, we first recapitulate evidence for and against this postulate, and then report the results of an evaluation in a crowd-sourcing study based on about 3.000 judgments. The results do not reveal a strong preference for simple rules, whereas we can observe a weak preference for longer rules in some domains. We then relate these results to well-known cognitive biases such as the conjunction fallacy, the representative heuristic, or the recogition heuristic, and investigate their relation to rule length and plausibility.Comment: V4: Another rewrite of section on interpretability to clarify focus on plausibility and relation to interpretability, comprehensibility, and justifiabilit
    • …
    corecore