243,528 research outputs found

    Advanced Techniques for Assets Maintenance Management

    Get PDF
    16th IFAC Symposium on Information Control Problems in Manufacturing INCOM 2018 Bergamo, Italy, 11–13 June 2018. Edited by Marco Macchi, László Monostori, Roberto PintoThe aim of this paper is to remark the importance of new and advanced techniques supporting decision making in different business processes for maintenance and assets management, as well as the basic need of adopting a certain management framework with a clear processes map and the corresponding IT supporting systems. Framework processes and systems will be the key fundamental enablers for success and for continuous improvement. The suggested framework will help to define and improve business policies and work procedures for the assets operation and maintenance along their life cycle. The following sections present some achievements on this focus, proposing finally possible future lines for a research agenda within this field of assets management

    A framework for effective management of condition based maintenance programs in the context of industrial development of E-Maintenance strategies

    Get PDF
    CBM (Condition Based Maintenance) solutions are increasingly present in industrial systems due to two main circumstances: rapid evolution, without precedents, in the capture and analysis of data and significant cost reduction of supporting technologies. CBM programs in industrial systems can become extremely complex, especially when considering the effective introduction of new capabilities provided by PHM (Prognostics and Health Management) and E-maintenance disciplines. In this scenario, any CBM solution involves the management of numerous technical aspects, that the maintenance manager needs to understand, in order to be implemented properly and effectively, according to the company’s strategy. This paper provides a comprehensive representation of the key components of a generic CBM solution, this is presented using a framework or supporting structure for an effective management of the CBM programs. The concept “symptom of failure”, its corresponding analysis techniques (introduced by ISO 13379-1 and linked with RCM/FMEA analysis), and other international standard for CBM open-software application development (for instance, ISO 13374 and OSA-CBM), are used in the paper for the development of the framework. An original template has been developed, adopting the formal structure of RCM analysis templates, to integrate the information of the PHM techniques used to capture the failure mode behaviour and to manage maintenance. Finally, a case study describes the framework using the referred template.Gobierno de Andalucía P11-TEP-7303 M

    Software Measurement Activities in Small and Medium Enterprises: an Empirical Assessment

    Get PDF
    An empirical study for evaluating the proper implementation of measurement/metric programs in software companies in one area of Turkey is presented. The research questions are discussed and validated with the help of senior software managers (more than 15 years’ experience) and then used for interviewing a variety of medium and small scale software companies in Ankara. Observations show that there is a common reluctance/lack of interest in utilizing measurements/metrics despite the fact that they are well known in the industry. A side product of this research is that internationally recognized standards such as ISO and CMMI are pursued if they are a part of project/job requirements; without these requirements, introducing those standards to the companies remains as a long-term target to increase quality

    The Measurement of Quality of Semantic Standards: the Application of a Quality Model on the SETU standard for eGovernment

    Get PDF
    eGovernment interoperability should be dealt with using high-quality standards. A quality model for standards is presented based on knowledge from the software engineering domain. In the tradition of action research the model is used on the SETU standard, a standard that is mandatory in the public sector of the Netherlands in order to achieve eGovernment interoperability. This results in improvement suggestions for the SETU standards, just as improvement suggestions for the quality model have been identified. Most importantly it shows that a quality model can be used for several purposes, including selecting standards for eGovernment interoperability

    Reasoning About the Reliability of Multi-version, Diverse Real-Time Systems

    Get PDF
    This paper is concerned with the development of reliable real-time systems for use in high integrity applications. It advocates the use of diverse replicated channels, but does not require the dependencies between the channels to be evaluated. Rather it develops and extends the approach of Little wood and Rush by (for general systems) by investigating a two channel system in which one channel, A, is produced to a high level of reliability (i.e. has a very low failure rate), while the other, B, employs various forms of static analysis to sustain an argument that it is perfect (i.e. it will never miss a deadline). The first channel is fully functional, the second contains a more restricted computational model and contains only the critical computations. Potential dependencies between the channels (and their verification) are evaluated in terms of aleatory and epistemic uncertainty. At the aleatory level the events ''A fails" and ''B is imperfect" are independent. Moreover, unlike the general case, independence at the epistemic level is also proposed for common forms of implementation and analysis for real-time systems and their temporal requirements (deadlines). As a result, a systematic approach is advocated that can be applied in a real engineering context to produce highly reliable real-time systems, and to support numerical claims about the level of reliability achieved

    The characteristics of the Computer Supported Collaborative Learning (CSCL) through Moodle: a view on students’ knowledge construction process

    Get PDF
    Computer Supported Collaborative Learning (CSCL) is based on the pedagogical process of observation where students will learn progressively through active group interaction. CSCL is an emerging branch of the learning sciences concerned with studying on how people can learn together with the help of computers. Thus, this research was conducted to measure the characteristics of the CSCL learning environment through Moodle that assists the process of students’ knowledge construction during the teaching and learning process. The CSCL learning environment is an educational learning system which develops to help the teachers and students in managing School Based Assessment (SBA) in selected secondary school in Malaysia. Samples involved two groups of students and two Technical and Vocational Education and Training (TVET) teachers from two different schools. A total of 61 students, who were taught using CSCL approach through Moodle, underwent the process of teaching and learning using their school computer laboratory. The finding shows that the characteristics of the CSCL learning approach that used in this learning environment for the first group are at a high level with overall mean of 4.17 and the second group at moderate level with overall mean of 3.62. The result proves that the characteristics of the CSCL learning environment help students to build their knowledge during teaching and learning process at the high level with an overall mean score of 3.87. The mean of these two groups may vary according to students’ background, as well as learning environment facilities. Although, CSCL leads to students’ self-development, improving learning quality, sharing knowledge and assisting students’ in the process of building their knowledge, implementation of CSCL must first considering the technology relevant facilities, especially computer laboratory and internet accessibility in school. The implication is that designing a good CSCL must also taking into account the targeted users’ cultural background and socioeconomic factor

    Doctor of Philosophy

    Get PDF
    dissertationThe Active Traffic and Demand Management (ATDM) initiative aims to integrate various management strategies and control measures so as to achieve the mobility, environment and sustainability goals. To support the active monitoring and management of real-world complex traffic conditions, the first objective of this dissertation is to develop a travel time reliability estimation and prediction methodology that can provide informed decisions for the management and operation agencies and travelers. A systematic modeling framework was developed to consider a corridor with multiple bottlenecks, and a series of close-form formulas was derived to quantify the travel time distribution under both stochastic demand and capacity, with possible on-ramp and off-ramp flow changes. Traffic state estimation techniques are often used to guide operational management decisions, and accurate traffic estimates are critically needed in ATDM applications designed for reducing instability, volatility and emissions in the transportation system. By capturing the essential forward and backward wave propagation characteristics under possible random measurement errors, this dissertation proposes a unified representation with a simple but theoretically sound explanation for traffic observations under free-flow, congested and dynamic transient conditions. This study also presents a linear programming model to quantify the value of traffic measurements, in a heterogeneous data environment with fixed sensors, Bluetooth readers and GPS sensors. It is important to design comprehensive traffic control measures that can systematically address deteriorating congestion and environmental issues. To better evaluate and assess the mobility and environmental benefits of the transportation improvement plans, this dissertation also discusses a cross-resolution modeling framework for integrating a microscopic emission model with the existing mesoscopic traffic simulation model. A simplified car-following model-based vehicle trajectory construction method is used to generate the high-resolution vehicle trajectory profiles and resulting emission output. In addition, this dissertation discusses a number of important issues for a cloud computing-based software system implementation. A prototype of a reliability-based traveler information provision and dissemination system is developed to offer a rich set of travel reliability information for the general public and traffic management and planning organizations
    corecore