568 research outputs found

    A New Stable Peer-to-Peer Protocol with Non-persistent Peers

    Full text link
    Recent studies have suggested that the stability of peer-to-peer networks may rely on persistent peers, who dwell on the network after they obtain the entire file. In the absence of such peers, one piece becomes extremely rare in the network, which leads to instability. Technological developments, however, are poised to reduce the incidence of persistent peers, giving rise to a need for a protocol that guarantees stability with non-persistent peers. We propose a novel peer-to-peer protocol, the group suppression protocol, to ensure the stability of peer-to-peer networks under the scenario that all the peers adopt non-persistent behavior. Using a suitable Lyapunov potential function, the group suppression protocol is proven to be stable when the file is broken into two pieces, and detailed experiments demonstrate the stability of the protocol for arbitrary number of pieces. We define and simulate a decentralized version of this protocol for practical applications. Straightforward incorporation of the group suppression protocol into BitTorrent while retaining most of BitTorrent's core mechanisms is also presented. Subsequent simulations show that under certain assumptions, BitTorrent with the official protocol cannot escape from the missing piece syndrome, but BitTorrent with group suppression does.Comment: There are only a couple of minor changes in this version. Simulation tool is specified this time. Some repetitive figures are remove

    Modeling and Control of Rare Segments in BitTorrent with Epidemic Dynamics

    Full text link
    Despite its existing incentives for leecher cooperation, BitTorrent file sharing fundamentally relies on the presence of seeder peers. Seeder peers essentially operate outside the BitTorrent incentives, with two caveats: slow downlinks lead to increased numbers of "temporary" seeders (who left their console, but will terminate their seeder role when they return), and the copyright liability boon that file segmentation offers for permanent seeders. Using a simple epidemic model for a two-segment BitTorrent swarm, we focus on the BitTorrent rule to disseminate the (locally) rarest segments first. With our model, we show that the rarest-segment first rule minimizes transition time to seeder (complete file acquisition) and equalizes the segment populations in steady-state. We discuss how alternative dissemination rules may {\em beneficially increase} file acquisition times causing leechers to remain in the system longer (particularly as temporary seeders). The result is that leechers are further enticed to cooperate. This eliminates the threat of extinction of rare segments which is prevented by the needed presence of permanent seeders. Our model allows us to study the corresponding trade-offs between performance improvement, load on permanent seeders, and content availability, which we leave for future work. Finally, interpreting the two-segment model as one involving a rare segment and a "lumped" segment representing the rest, we study a model that jointly considers control of rare segments and different uplinks causing "choking," where high-uplink peers will not engage in certain transactions with low-uplink peers.Comment: 18 pages, 6 figures, A shorter version of this paper that did not include the N-segment lumped model was presented in May 2011 at IEEE ICC, Kyot

    Pushing BitTorrent Locality to the Limit

    Get PDF
    Peer-to-peer (P2P) locality has recently raised a lot of interest in the community. Indeed, whereas P2P content distribution enables financial savings for the content providers, it dramatically increases the traffic on inter-ISP links. To solve this issue, the idea to keep a fraction of the P2P traffic local to each ISP was introduced a few years ago. Since then, P2P solutions exploiting locality have been introduced. However, several fundamental issues on locality still need to be explored. In particular, how far can we push locality, and what is, at the scale of the Internet, the reduction of traffic that can be achieved with locality? In this paper, we perform extensive experiments on a controlled environment with up to 10 000 BitTorrent clients to evaluate the impact of high locality on inter-ISP links traffic and peers download completion time. We introduce two simple mechanisms that make high locality possible in challenging scenarios and we show that we save up to several orders of magnitude inter-ISP traffic compared to traditional locality without adversely impacting peers download completion time. In addition, we crawled 214 443 torrents representing 6 113 224 unique peers spread among 9 605 ASes. We show that whereas the torrents we crawled generated 11.6 petabytes of inter-ISP traffic, our locality policy implemented for all torrents would have reduced the global inter-ISP traffic by 40%

    CLOSER: A Collaborative Locality-aware Overlay SERvice

    Get PDF
    Current Peer-to-Peer (P2P) file sharing systems make use of a considerable percentage of Internet Service Providers (ISPs) bandwidth. This paper presents the Collaborative Locality-aware Overlay SERvice (CLOSER), an architecture that aims at lessening the usage of expensive international links by exploiting traffic locality (i.e., a resource is downloaded from the inside of the ISP whenever possible). The paper proves the effectiveness of CLOSER by analysis and simulation, also comparing this architecture with existing solutions for traffic locality in P2P systems. While savings on international links can be attractive for ISPs, it is necessary to offer some features that can be of interest for users to favor a wide adoption of the application. For this reason, CLOSER also introduces a privacy module that may arouse the users' interest and encourage them to switch to the new architectur

    Is Content Publishing in BitTorrent Altruistic or Profit-Driven

    Get PDF
    BitTorrent is the most popular P2P content delivery application where individual users share various type of content with tens of thousands of other users. The growing popularity of BitTorrent is primarily due to the availability of valuable content without any cost for the consumers. However, apart from required resources, publishing (sharing) valuable (and often copyrighted) content has serious legal implications for user who publish the material (or publishers). This raises a question that whether (at least major) content publishers behave in an altruistic fashion or have other incentives such as financial. In this study, we identify the content publishers of more than 55k torrents in 2 major BitTorrent portals and examine their behavior. We demonstrate that a small fraction of publishers are responsible for 66% of published content and 75% of the downloads. Our investigations reveal that these major publishers respond to two different profiles. On one hand, antipiracy agencies and malicious publishers publish a large amount of fake files to protect copyrighted content and spread malware respectively. On the other hand, content publishing in BitTorrent is largely driven by companies with financial incentive. Therefore, if these companies lose their interest or are unable to publish content, BitTorrent traffic/portals may disappear or at least their associated traffic will significantly reduce
    corecore