4,577 research outputs found

    NHEP Year 12 Work Plan

    Get PDF
    The New Hampshire Estuaries Project (NHEP) is part of the U.S. Environmental Protection Agency’s National Estuary Program which is a joint local/state/federal program established under the Clean Water Act with the goal of protecting and enhancing nationally significant estuaries. The NHEP’s Comprehensive Conservation and Management Plan (Management Plan)for New Hampshire’s estuaries was completed in 2000 and updated in 2005. The Management Plan outlines key issues related to management of New Hampshire’s estuaries and proposes strategies (Action Plans) to protect, enhance, and monitor the state’s estuarine resources. Local stakeholders established the NHEP’s priorities, which include water quality improvements, shellfish resource enhancements, land protection, habitat restoration, and outreach and education. Projects addressing these priorities are undertaken throughout New Hampshire’s 42 community coastal watershed. In addition, the NHEP developed and now implements a comprehensive monitoring program for the coastal watershed. The NHEP collects, compiles and analyzes data for a number of environmental indicators. The NHEP’s communications plan outlines goals and strategies to shape the program’s outreach and communications activities to better support Management Plan implementation. Each year the NHEP prepares its work plan, which describes recent accomplishments and priority activities and projects to be undertaken in the next year to implement the Management Plan. The work plan is developed by the NHEP with input from NHEP’s four project teams. The NHEP Management Committee reviews and approves the work plan each year. The current work plan represents the twelfth year of the NHEP’s activities and involvement in collaboratively protecting, enhancing, and monitoring New Hampshire’s estuaries. Section 1 of this document is a report of the NHEP’s activities for the past year. The section describes actions undertaken by the NHEP to implement goals and activities identified in work plans from the two previous years (Year Ten Work Plan: http://www.nhep.unh.edu/resources/pdf/nhepyearten-nhep-05.pdf; and Year Eleven Work Plan: http://www.nhep.unh.edu/resources/pdf/nhep_year_eleven-nhep-06.pdf); describes how the NHEP’s activities helped support Clean Water Act programs; summarizes meetings and milestones from the last year; lists all ongoing projects supported by the NHEP; and reports on last year’s travel expenses. Section 2 of this document describes activities and priorities to be undertaken by the NHEP as part of the new EPA grant, beginning on October 1, 2007. It identifies the NHEP’s implementation and program goals; describes specific activities to be undertaken by NHEP staff or partners with grant funds to implement the NHEP Management Plan and Monitoring Plan; describes the NHEP’s administrative structure and costs; and presents the overall budget for the Year 12 grant

    Remote sensing data as a tool to monitor and mitigate natural catastrophes resulting from anthropogenic activities

    Get PDF
    This thesis demonstrates how remotely sensed satellite acquisitions can be used to addresses some of the natural catastrophes resulting from anthropogenic activities. Examples from both land and water systems are used to illustrate the breath of this toolbox. The effects of global climate change on biological systems and the wellbeing of everyday people are becoming less easy to ignore. In addition, our oceans are facing multiple large-scale stressors, including microplastics as a recently recognized threat, which place at risk the resources which a large percentage of the world’s population depends on for their livelihood. The cause of many of these changes stem from anthropogenic activities, but lacking understanding of complex ecosystems limits our ability to make definite conclusions as to cause and effect. The difficulty to collect on-the-ground data sufficient enough to capture processes working over scales of hundred of kilometers up to the entire globe is often a limitation to research. Remote sensing systems help ameliorate this issue through providing tools to better monitor environmental changes over large areas. The examples provided in this thesis focus on (Section I) tropical peatland fire characteristics and burning in Southeast Asia as a significant contributor to greenhouse gas emissions and (Section II) spread of river-based plastic pollution in coastal ocean systems. Section I specifically focuses on fires within Indonesia, which holds more than half of all known peatlands in the tropical zone and are estimated to represent a carbon pool of 82–92 gigatons. A brief description of recent development activities within Indonesia is presented in Section I of the Introduction, followed by meteorological processes responsible for extended drought periods in the region, and the situation of current fire control within the country. Chapter 1 presents an example of the large improvement in fire detection, as well as measurement of fire front characteristics, provided by a state-of-the-art thermal remote sensing. Chapter 2 goes into detail describing how an active satellite sensor system is able to provide much quicker and more accurate estimates of burned area for the tropics than other existing methods dependent on passive satellite sensor systems. Both these methods provide powerful tools for development of an improved system to monitor fire over Indonesia. The goal of such a monitoring system would be to reduce fire emissions from this large country, which according to global climate models play an important role in global climate change. Section II focuses on aquatic plastic pollution flowing from a freshwater system into the coastal oceans. A background of the issue of plastic pollution along with the current status of plastic debris in both oceans and inland river systems is presented in Section II of the Introduction. Chapter 3 describes development and comparison of two different modelling efforts to display how plastic particles being emitted from a major river are accumulating along the nearby coastline. The goal of this work is to present how remote sensing data could be used to in conjunction with ocean current modelling to create a comprehensive particle tracking monitoring system.Diese Arbeit zeigt, wie aus der Ferne wahrgenommene Satellitenaufnahmen dazu verwendet werden können, sich einigen Naturkatastrophen, die aus anthropogenen Aktivitäten resultieren, zu widmen. Anhand von Beispielen aus Land- und Wassersystemen wird der Umfang dieses technischen Werkzeugkastens dargestellt. Die Auswirkungen des globalen Klimawandels auf biologische Systeme und das Wohlbefinden des Menschen lassen sich nicht mehr ignorieren. Darüber hinaus sind unsere Ozeane mehreren großen Stressfaktoren ausgesetzt, einschließlich Mikroplastik als eine seit kurzem anerkennte Bedrohung, welche die Ressourcen gefährden, von denen der Lebensunterhalt eines großen Teils der Weltbevölkerung abhängt. Die Ursache vieler dieser Veränderungen liegt in anthropogenen Aktivitäten, aber mangelndes Verständnis für komplexe Ökosysteme begrenzt unsere Fähigkeit, eindeutige Rückschlüsse auf Ursache und Wirkung zu treffen. Die Schwierigkeit, Daten vor Ort zu sammeln, die ausreichen, um Prozesse zu erfassen, die über Hunderte von Kilometern bis hin zum gesamten Globus arbeiten, ist oft eine Einschränkung der Forschung. Fernerkundungssysteme tragen dazu bei, dieses Problem zu beheben, indem sie Werkzeuge zur besseren Überwachung von Umweltveränderungen in großen Gebieten bereitstellen. Die Beispiele in dieser Arbeit konzentrieren sich auf („Section I“) Feuermerkmale und Brandflächen der tropischen Torfgebiete in Südostasien als signifikanter Beitrag zu Treibhausgasemissionen und („Section II“) Ausbreitung von Fluss-basiertem Plastikmüll in küstennahen Meeressystemen. Section I konzentriert sich speziell auf die Brände in Indonesien, welches mehr als die Hälfte aller bekannten Torfgebiete in der tropischen Zone besitzt und auf einen Kohlenstoffpool von 82-92 Gigatonnen geschätzt wird. Eine kurze Beschreibung der jüngsten Entwicklungstätigkeiten in Indonesien wird in Section I der Einleitung vorgestellt, gefolgt von meteorologischen Prozessen, die für ausgedehnte Dürreperioden in der Region verantwortlich sind, und der Situation der aktuellen Feuerkontrolle innerhalb des Landes. Chapter 1 zeigt ein Beispiel für die große Verbesserung der Branddetektion sowie die Messung der Brandfronteigenschaften, die durch eine moderne thermische Fernerkundung erreicht werden können. In Chapter 2 wird ausführlich beschrieben, wie ein aktives Satellitensensorsystem in der Lage ist, schnellere und genauere Schätzungen der verbrannten Fläche für die Tropen zu liefern als andere existierende Methoden, die von passiven Satellitensensorsystemen abhängen. Beide Methoden bieten leistungsstarke Werkzeuge für die Entwicklung eines verbesserten Systems zur Brandüberwachung von Indonesien. Ziel eines solchen Überwachungssystems wäre es, Brandemissionen aus diesem großen Land zu reduzieren, das nach globalen Klimamodellen eine wichtige Rolle im globalen Klimawandel spielt. Section II konzentriert sich auf die Verschmutzung von Wasserplastik, die von einem Süßwassersystem in die Küstenmeere fließt. Ein Hintergrund des Problems der Plastikverschmutzung zusammen mit dem gegenwärtigen Status von Plastiktrümmern sowohl in Ozeanen als auch Binnenflusssystemen wird in Section II der Einleitung dargestellt. Chapter 3 beschreibt die Entwicklung und den Vergleich von zwei verschiedenen Modellierungsbemühungen, um zu zeigen, wie sich Kunststoffpartikel, die von einem großen Fluss emittiert werden, entlang der nahen Küstenlinie ansammeln. Das Ziel dieser Arbeit ist zu zeigen, wie Fernerkundungsdaten in Verbindung mit Meeresströmungsmodellierung verwendet werden können, um ein umfassendes Teilchenverfolgungsüberwachungssystem zu schaffen

    Understanding and Detecting Malicious Cyber Infrastructures

    Get PDF
    Malware (e.g., trojans, bots, and spyware) is still a pervasive threat on the Internet. It is able to infect computer systems to further launch a variety of malicious activities such as sending spam, stealing sensitive information and launching distributed denial-of-service (DDoS) attacks. In order to continue malevolent activities without being detected and to improve the efficiency of malicious activities, cyber-criminals tend to build malicious cyber infrastructures to communicate with their malware and to exploit benign users. In these infrastructures, multiple servers are set to be efficient and anonymous in (i) malware distribution (using redirectors and exploit servers), (ii) control (using C&C servers), (iii) monetization (using payment servers), and (iv) robustness against server takedowns (using multiple backups for each type of server). The most straightforward way to counteract the malware threat is to detect malware directly on infected hosts. However, it is difficult since packing and obfuscation techniques are frequently used by malware to evade state-of-the-art anti-virus tools. Therefore, an alternate solution is to detect and disrupt the malicious cyber infrastructures used by malware. In this dissertation, we take an important step in this direction and focus on identifying malicious servers behind those malicious cyber infrastructures. We present a comprehensive inferring framework to infer servers involved in malicious cyber infrastructure based on the three roles of those servers: compromised server, malicious server accessed through redirection and malicious server accessed through directly connecting. We characterize these three roles from four novel perspectives and demonstrate our detection technologies in four systems: PoisonAmplifier, SMASH, VisHunter and NeighbourWatcher. PoisonAmplifier focuses on compromised servers. It explores the fact that cybercriminals tend to use compromised servers to trick benign users during the attacking process. Therefore, it is designed to proactively find more compromised servers. SMASH focuses on malicious servers accessed through directly connecting. It explores the fact that multiple backups are usually used in malicious cyber infrastructures to avoid server takedowns. Therefore, it leverages the correlation among malicious servers to infer a group of malicious servers. VisHunter focuses on the redirections from compromised servers to malicious servers. It explores the fact that cybercriminals usually conceal their core malicious servers. Therefore, it is designed to detect those “invisible” malicious servers. NeighbourWatcher focuses on all general malicious servers promoted by spammers. It explores the observation that spammers intend to promote some servers (e.g., phishing servers) on the special websites (e.g., forum and wikis) to trick benign users and to improve the reputation of their malicious servers. In short, we build a comprehensive inferring framework to identify servers involved in malicious cyber infrastructures from four novel perspectives and implement different inference techniques in different systems that complement each other. Our inferring framework has been evaluated in live networks and/or real-world network traces. The evaluation results show that it can accurately detect malicious servers involved in malicious cyber infrastructures with a very low false positive rate. We found the three roles of malicious servers we proposed can characterize most of servers involved in malicious cyber infrastructures, and the four principles we developed for the detection are invariable across different malicious cyber infrastructures. We believe our experience and lessons are of great benefit to the future malicious cyber infrastructure study and detection

    Oceanus.

    Get PDF
    v. 28, no. 1 (1985
    • …
    corecore