179 research outputs found

    Tatouage audio par EMD

    Get PDF
    In this paper a new adaptive audio watermarking algorithm based on Empirical Mode Decomposition (EMD) is introduced. The audio signal is divided into frames and each one is decomposed adaptively, by EMD, into intrinsic oscillatory components called Intrinsic Mode Functions (IMFs). The watermark and the synchronization codes are embedded into the extrema of the last IMF, a low frequency mode stable under different attacks and preserving audio perceptual quality of the host signal. The data embedding rate of the proposed algorithm is 46.9–50.3 b/s. Relying on exhaustive simulations, we show the robustness of the hidden watermark for additive noise, MP3 compression, re-quantization, filtering, cropping and resampling. The comparison analysis shows that our method has better performance than watermarking schemes reported recently

    Localization of Copy-Move Forgery in speech signals through watermarking using DCT-QIM

    Get PDF
    Digital speech copyright protection and forgery identification are the prevalent issues in our advancing digital world. In speech forgery, voiced part of the speech signal is copied and pasted to a specific location which alters the meaning of the speech signal. Watermarking can be used to safe guard the copyrights of the owner. To detect copy-move forgeries a transform domain watermarking method is proposed. In the proposed method, watermarking is achieved through Discrete Cosine Transform (DCT) and Quantization Index Modulation (QIM) rule. Hash bits are also inserted in watermarked voice segments to detect Copy-Move Forgery (CMF) in speech signals. Proposed method is evaluated on two databases and achieved good imperceptibility. It exhibits robustness in detecting the watermark and forgeries against signal processing attacks such as resample, low-pass filtering, jittering, compression and cropping. The proposed work contributes for forensics analysis in speech signals. This proposed work also compared with the some of the state-of-art methods

    New Digital Audio Watermarking Algorithms for Copyright Protection

    Get PDF
    This thesis investigates the development of digital audio watermarking in addressing issues such as copyright protection. Over the past two decades, many digital watermarking algorithms have been developed, each with its own advantages and disadvantages. The main aim of this thesis was to develop a new watermarking algorithm within an existing Fast Fourier Transform framework. This resulted in the development of a Complex Spectrum Phase Evolution based watermarking algorithm. In this new implementation, the embedding positions were generated dynamically thereby rendering it more difficult for an attacker to remove, and watermark information was embedded by manipulation of the spectral components in the time domain thereby reducing any audible distortion. Further improvements were attained when the embedding criteria was based on bin location comparison instead of magnitude, thereby rendering it more robust against those attacks that interfere with the spectral magnitudes. However, it was discovered that this new audio watermarking algorithm has some disadvantages such as a relatively low capacity and a non-consistent robustness for different audio files. Therefore, a further aim of this thesis was to improve the algorithm from a different perspective. Improvements were investigated using an Singular Value Decomposition framework wherein a novel observation was discovered. Furthermore, a psychoacoustic model was incorporated to suppress any audible distortion. This resulted in a watermarking algorithm which achieved a higher capacity and a more consistent robustness. The overall result was that two new digital audio watermarking algorithms were developed which were complementary in their performance thereby opening more opportunities for further research

    PERBAIKAN DETEKSI WATERMARK MENGGUNAKAN EKSTRAKSI FITUR BENTUK PADA AUDIO WATERMARKING BERBASISKAN TEKNIK DWT-SVD-QIM PADA SEGMEN AUDIO ADAPTIF

    Get PDF
    Di era globalisasi saat ini lebih mudah untuk mengakses informasi melalui berbagai media. Sehingga banyak ditemukan kasus pelanggaran hak cipta. Penelitian ini menjadi salah satu solusi untuk mengatasi permasalahan tersebut yaitu dengan mengaplikasikan teknik watermarking. Pada penelitian ini dilakukan perbaikan tingkat akurasi deteksi watermark dengan menggunakan ekstraksi fitur bentuk untuk mengekstrak informasi dari suatu audio sehingga hak cipta dari data digital dapat terlindungi dari pihak-pihak yang menyalahgunakannya. Metode yang digunakan pada Tugas Akhir ini yaitu Discrete Wavelet Transform (DWT), Singular Value Decomposition (SVD), dan Quantization Index Modulation (QIM). Hasil yang diperoleh menunjukkan kualitas watermark ketika dilakukan pengujian dengan menggunakan parameter SNR, ODG dan MOS. ODG bernilai -0.02, SNR bernilai 33.20 dB, untuk rata-rata MOS tertinggi bernilai 4.60 dan besar kapasitas (C)  bernilai 215.72 bps. Ketahanan watermark (BER) rata-rata terkecil bernilai 22% dan tingkat akurasi deteksi watermark (CDR) rata-rata tertinggi sebesar 71%

    An SVD-based audio watermarking technique

    Full text link

    AN INVESTIGATION OF DIFFERENT VIDEO WATERMARKING TECHNIQUES

    Get PDF
    Watermarking is an advanced technology that identifies to solve the problem of illegal manipulation and distribution of digital data. It is the art of hiding the copyright information into host such that the embedded data is imperceptible. The covers in the forms of digital multimedia object, namely image, audio and video. The extensive literature collected related to the performance improvement of video watermarking techniques is critically reviewed and presented in this paper. Also, comprehensive review of the literature on the evolution of various video watermarking techniques to achieve robustness and to maintain the quality of watermarked video sequences

    Audio Signal Processing Using Time-Frequency Approaches: Coding, Classification, Fingerprinting, and Watermarking

    Get PDF
    Audio signals are information rich nonstationary signals that play an important role in our day-to-day communication, perception of environment, and entertainment. Due to its non-stationary nature, time- or frequency-only approaches are inadequate in analyzing these signals. A joint time-frequency (TF) approach would be a better choice to efficiently process these signals. In this digital era, compression, intelligent indexing for content-based retrieval, classification, and protection of digital audio content are few of the areas that encapsulate a majority of the audio signal processing applications. In this paper, we present a comprehensive array of TF methodologies that successfully address applications in all of the above mentioned areas. A TF-based audio coding scheme with novel psychoacoustics model, music classification, audio classification of environmental sounds, audio fingerprinting, and audio watermarking will be presented to demonstrate the advantages of using time-frequency approaches in analyzing and extracting information from audio signals.</p

    A robust audio watermarking scheme based on reduced singular value decomposition and distortion removal

    Get PDF
    This paper presents a blind audio watermarking algorithm based on the reduced singular value decomposition(RSVD). A new observation on one of the resulting unitary matrices is uncovered. The proposed scheme manipulates coefficients based on this observation in order to embed watermark bits. To preserve audio fidelity a threshold- based distortion control technique is applied and this is further supplemented by distortion suppression utilizing psychoacoustic principles. Test results on real music signals show that this watermarking scheme is in the range of imperceptibility for human hearing, is accurate and also robust against MP3 compression at various bit rates as well as other selected attacks. The data payload is comparatively high compared to existing audio watermarking schemes

    Security of Electronic Patient Record using Imperceptible DCT-SVD based Audio Watermarking Technique

    Get PDF
    Abstract—A robust and highly imperceptible audio watermarkingtechnique is presented to secure the electronic patientrecord of Parkinson’s Disease (PD) affected patient. The proposedDCT-SVD based watermarking technique introduces minimalchanges in speech such that the accuracy in classification of PDaffected person’s speech and healthy person’s speech is retained.To achieve high imperceptibility the voiced part of the speech isconsidered for embedding the watermark. It is shown that theproposed watermarking technique is robust to common signalprocessing attacks. The practicability of the proposed technique istested: by creating an android application to record & watermarkthe speech signal. The classification of PD affected speech is doneusing Support Vector Machine (SVM) classifier in cloud server
    corecore