663 research outputs found

    Kovalenko's Full-Rank Limit and Overhead as Lower Bounds for Error-Performances of LDPC and LT Codes over Binary Erasure Channels

    Full text link
    We present Kovalenko's full-rank limit as a tight lower bound for decoding error probability of LDPC codes and LT codes over BEC. From the limit, we derive a full-rank overhead as a lower bound for stable overheads for successful maximum-likelihood decoding of the codes.Comment: A short version of this paper was presented at ISITA 2008, Auckland NZ. The first draft was submitted to IEEE Transactions on Information Theory, 2008/0

    Fountain Codes under Maximum Likelihood Decoding

    Get PDF
    This dissertation focuses on fountain codes under maximum likelihood (ML) decoding. First LT codes are considered under a practical and widely used ML decoding algorithm known as inactivation decoding. Different analysis techniques are presented to characterize the decoding complexity. Next an upper bound to the probability of decoding failure of Raptor codes under ML decoding is provided. Then, the distance properties of an ensemble of fixed-rate Raptor codes with linear random outer codes are analyzed. Finally, a novel class of fountain codes is presented, which consists of a parallel concatenation of a block code with a linear random fountain code.Comment: PhD Thesi

    Decentralized Erasure Codes for Distributed Networked Storage

    Full text link
    We consider the problem of constructing an erasure code for storage over a network when the data sources are distributed. Specifically, we assume that there are n storage nodes with limited memory and k<n sources generating the data. We want a data collector, who can appear anywhere in the network, to query any k storage nodes and be able to retrieve the data. We introduce Decentralized Erasure Codes, which are linear codes with a specific randomized structure inspired by network coding on random bipartite graphs. We show that decentralized erasure codes are optimally sparse, and lead to reduced communication, storage and computation cost over random linear coding.Comment: to appear in IEEE Transactions on Information Theory, Special Issue: Networking and Information Theor

    Rateless Coding for Gaussian Channels

    Get PDF
    A rateless code-i.e., a rate-compatible family of codes-has the property that codewords of the higher rate codes are prefixes of those of the lower rate ones. A perfect family of such codes is one in which each of the codes in the family is capacity-achieving. We show by construction that perfect rateless codes with low-complexity decoding algorithms exist for additive white Gaussian noise channels. Our construction involves the use of layered encoding and successive decoding, together with repetition using time-varying layer weights. As an illustration of our framework, we design a practical three-rate code family. We further construct rich sets of near-perfect rateless codes within our architecture that require either significantly fewer layers or lower complexity than their perfect counterparts. Variations of the basic construction are also developed, including one for time-varying channels in which there is no a priori stochastic model.Comment: 18 page

    Straggler-Resilient Distributed Computing

    Get PDF
    In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of University of Bergen's products or services. Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink.Utbredelsen av distribuerte datasystemer har økt betydelig de siste årene. Dette skyldes først og fremst at behovet for beregningskraft øker raskere enn hastigheten til en enkelt datamaskin, slik at vi må bruke flere datamaskiner for å møte etterspørselen, og at det blir stadig mer vanlig at systemer er spredt over et stort geografisk område. Dette paradigmeskiftet medfører mange tekniske utfordringer. En av disse er knyttet til "straggler"-problemet, som er forårsaket av forsinkelsesvariasjoner i distribuerte systemer, der en beregning forsinkes av noen få langsomme noder slik at andre noder må vente før de kan fortsette. Straggler-problemet kan svekke effektiviteten til distribuerte systemer betydelig i situasjoner der en enkelt node som opplever en midlertidig overbelastning kan låse et helt system. I denne avhandlingen studerer vi metoder for å gjøre beregninger av forskjellige typer motstandsdyktige mot slike problemer, og dermed gjøre det mulig for et distribuert system å fortsette til tross for at noen noder ikke svarer i tide. Metodene vi foreslår er skreddersydde for spesielle typer beregninger. Vi foreslår metoder tilpasset distribuert matrise-vektor-multiplikasjon (som er en grunnleggende operasjon i mange typer beregninger), distribuert maskinlæring og distribuert sporing av en tilfeldig prosess (for eksempel det å spore plasseringen til kjøretøy for å unngå kollisjon). De foreslåtte metodene utnytter redundans som enten blir introdusert som en del av metoden, eller som naturlig eksisterer i det underliggende problemet, til å kompensere for manglende delberegninger. For en av de foreslåtte metodene utnytter vi redundans for også å øke effektiviteten til kommunikasjonen mellom noder, og dermed redusere mengden data som må kommuniseres over nettverket. I likhet med straggler-problemet kan slik kommunikasjon begrense effektiviteten i distribuerte systemer betydelig. De foreslåtte metodene gir signifikante forbedringer i ventetid og pålitelighet sammenlignet med tidligere metoder.The number and scale of distributed computing systems being built have increased significantly in recent years. Primarily, that is because: i) our computing needs are increasing at a much higher rate than computers are becoming faster, so we need to use more of them to meet demand, and ii) systems that are fundamentally distributed, e.g., because the components that make them up are geographically distributed, are becoming increasingly prevalent. This paradigm shift is the source of many engineering challenges. Among them is the straggler problem, which is a problem caused by latency variations in distributed systems, where faster nodes are held up by slower ones. The straggler problem can significantly impair the effectiveness of distributed systems—a single node experiencing a transient outage (e.g., due to being overloaded) can lock up an entire system. In this thesis, we consider schemes for making a range of computations resilient against such stragglers, thus allowing a distributed system to proceed in spite of some nodes failing to respond on time. The schemes we propose are tailored for particular computations. We propose schemes designed for distributed matrix-vector multiplication, which is a fundamental operation in many computing applications, distributed machine learning—in the form of a straggler-resilient first-order optimization method—and distributed tracking of a time-varying process (e.g., tracking the location of a set of vehicles for a collision avoidance system). The proposed schemes rely on exploiting redundancy that is either introduced as part of the scheme, or exists naturally in the underlying problem, to compensate for missing results, i.e., they are a form of forward error correction for computations. Further, for one of the proposed schemes we exploit redundancy to also improve the effectiveness of multicasting, thus reducing the amount of data that needs to be communicated over the network. Such inter-node communication, like the straggler problem, can significantly limit the effectiveness of distributed systems. For the schemes we propose, we are able to show significant improvements in latency and reliability compared to previous schemes.Doktorgradsavhandlin

    On feedback-based rateless codes for data collection in vehicular networks

    Full text link
    The ability to transfer data reliably and with low delay over an unreliable service is intrinsic to a number of emerging technologies, including digital video broadcasting, over-the-air software updates, public/private cloud storage, and, recently, wireless vehicular networks. In particular, modern vehicles incorporate tens of sensors to provide vital sensor information to electronic control units (ECUs). In the current architecture, vehicle sensors are connected to ECUs via physical wires, which increase the cost, weight and maintenance effort of the car, especially as the number of electronic components keeps increasing. To mitigate the issues with physical wires, wireless sensor networks (WSN) have been contemplated for replacing the current wires with wireless links, making modern cars cheaper, lighter, and more efficient. However, the ability to reliably communicate with the ECUs is complicated by the dynamic channel properties that the car experiences as it travels through areas with different radio interference patterns, such as urban versus highway driving, or even different road quality, which may physically perturb the wireless sensors. This thesis develops a suite of reliable and efficient communication schemes built upon feedback-based rateless codes, and with a target application of vehicular networks. In particular, we first investigate the feasibility of multi-hop networking for intra-car WSN, and illustrate the potential gains of using the Collection Tree Protocol (CTP), the current state of the art in multi-hop data aggregation. Our results demonstrate, for example, that the packet delivery rate of a node using a single-hop topology protocol can be below 80% in practical scenarios, whereas CTP improves reliability performance beyond 95% across all nodes while simultaneously reducing radio energy consumption. Next, in order to migrate from a wired intra-car network to a wireless system, we consider an intermediate step to deploy a hybrid communication structure, wherein wired and wireless networks coexist. Towards this goal, we design a hybrid link scheduling algorithm that guarantees reliability and robustness under harsh vehicular environments. We further enhance the hybrid link scheduler with the rateless codes such that information leakage to an eavesdropper is almost zero for finite block lengths. In addition to reliability, one key requirement for coded communication schemes is to achieve a fast decoding rate. This feature is vital in a wide spectrum of communication systems, including multimedia and streaming applications (possibly inside vehicles) with real-time playback requirements, and delay-sensitive services, where the receiver needs to recover some data symbols before the recovery of entire frame. To address this issue, we develop feedback-based rateless codes with dynamically-adjusted nonuniform symbol selection distributions. Our simulation results, backed by analysis, show that feedback information paired with a nonuniform distribution significantly improves the decoding rate compared with the state of the art algorithms. We further demonstrate that amount of feedback sent can be tuned to the specific transmission properties of a given feedback channel
    corecore