9,864 research outputs found

    Maximum Entropy/Optimal Projection (MEOP) control design synthesis: Optimal quantification of the major design tradeoffs

    Get PDF
    The underlying philosophy and motivation of the optimal projection/maximum entropy (OP/ME) stochastic modeling and reduced control design methodology for high order systems with parameter uncertainties are discussed. The OP/ME design equations for reduced-order dynamic compensation including the effect of parameter uncertainties are reviewed. The application of the methodology to several Large Space Structures (LSS) problems of representative complexity is illustrated

    Numerical computation of rare events via large deviation theory

    Get PDF
    An overview of rare events algorithms based on large deviation theory (LDT) is presented. It covers a range of numerical schemes to compute the large deviation minimizer in various setups, and discusses best practices, common pitfalls, and implementation trade-offs. Generalizations, extensions, and improvements of the minimum action methods are proposed. These algorithms are tested on example problems which illustrate several common difficulties which arise e.g. when the forcing is degenerate or multiplicative, or the systems are infinite-dimensional. Generalizations to processes driven by non-Gaussian noises or random initial data and parameters are also discussed, along with the connection between the LDT-based approach reviewed here and other methods, such as stochastic field theory and optimal control. Finally, the integration of this approach in importance sampling methods using e.g. genealogical algorithms is explored
    corecore