365 research outputs found

    A Max-Product EM Algorithm for Reconstructing Markov-tree Sparse Signals from Compressive Samples

    Full text link
    We propose a Bayesian expectation-maximization (EM) algorithm for reconstructing Markov-tree sparse signals via belief propagation. The measurements follow an underdetermined linear model where the regression-coefficient vector is the sum of an unknown approximately sparse signal and a zero-mean white Gaussian noise with an unknown variance. The signal is composed of large- and small-magnitude components identified by binary state variables whose probabilistic dependence structure is described by a Markov tree. Gaussian priors are assigned to the signal coefficients given their state variables and the Jeffreys' noninformative prior is assigned to the noise variance. Our signal reconstruction scheme is based on an EM iteration that aims at maximizing the posterior distribution of the signal and its state variables given the noise variance. We construct the missing data for the EM iteration so that the complete-data posterior distribution corresponds to a hidden Markov tree (HMT) probabilistic graphical model that contains no loops and implement its maximization (M) step via a max-product algorithm. This EM algorithm estimates the vector of state variables as well as solves iteratively a linear system of equations to obtain the corresponding signal estimate. We select the noise variance so that the corresponding estimated signal and state variables obtained upon convergence of the EM iteration have the largest marginal posterior distribution. We compare the proposed and existing state-of-the-art reconstruction methods via signal and image reconstruction experiments.Comment: To appear in IEEE Transactions on Signal Processin

    Image reconstruction from compressive samples via a max-product EM algorithm

    Full text link

    Recovery from Linear Measurements with Complexity-Matching Universal Signal Estimation

    Full text link
    We study the compressed sensing (CS) signal estimation problem where an input signal is measured via a linear matrix multiplication under additive noise. While this setup usually assumes sparsity or compressibility in the input signal during recovery, the signal structure that can be leveraged is often not known a priori. In this paper, we consider universal CS recovery, where the statistics of a stationary ergodic signal source are estimated simultaneously with the signal itself. Inspired by Kolmogorov complexity and minimum description length, we focus on a maximum a posteriori (MAP) estimation framework that leverages universal priors to match the complexity of the source. Our framework can also be applied to general linear inverse problems where more measurements than in CS might be needed. We provide theoretical results that support the algorithmic feasibility of universal MAP estimation using a Markov chain Monte Carlo implementation, which is computationally challenging. We incorporate some techniques to accelerate the algorithm while providing comparable and in many cases better reconstruction quality than existing algorithms. Experimental results show the promise of universality in CS, particularly for low-complexity sources that do not exhibit standard sparsity or compressibility.Comment: 29 pages, 8 figure

    Algorithms for Reconstruction of Undersampled Atomic Force Microscopy Images

    Get PDF
    • …
    corecore