6,099 research outputs found

    Exploratory Path Planning Using the Max-Min Ant System Algorithm

    Get PDF
    In the path planning problem for autonomous mobile robots, robots have to plan their path from the start position to the goal. In this paper, we investigate the application of the MMAS algorithm to the exploratory path planning problem, in which the robots should explore the environment at the same time they plan the path. Max-min ant system is an ant colony optimization algorithm that exploits the best solutions found. In addition, to analyze the quality of solutions obtained, we also analyze the traveled distance spent by robots in the first iteration of the algorithm. The environment is previously unknown to the robots, although it is represented by a topological map, that does not require precise information from the environment and provides a simple way to execute the navigation of the path. Thus, the paths are represented by a sequence of actions that the robots should execute to reach the goal. The navigation of the best solution found was implemented in a realistic robotic simulator. The proposed algorithm provides a very good performance in relation to a genetic algorithm and the well-known A* algorithm that deal with this problem

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Technical report on Optimization-Based Bearing-Only Visual Homing with Applications to a 2-D Unicycle Model

    Full text link
    We consider the problem of bearing-based visual homing: Given a mobile robot which can measure bearing directions with respect to known landmarks, the goal is to guide the robot toward a desired "home" location. We propose a control law based on the gradient field of a Lyapunov function, and give sufficient conditions for global convergence. We show that the well-known Average Landmark Vector method (for which no convergence proof was known) can be obtained as a particular case of our framework. We then derive a sliding mode control law for a unicycle model which follows this gradient field. Both controllers do not depend on range information. Finally, we also show how our framework can be used to characterize the sensitivity of a home location with respect to noise in the specified bearings. This is an extended version of the conference paper [1].Comment: This is an extender version of R. Tron and K. Daniilidis, "An optimization approach to bearing-only visual homing with applications to a 2-D unicycle model," in IEEE International Conference on Robotics and Automation, 2014, containing additional proof

    Exploratory Path Planning for Mobile Robots in Dynamic Environments with Ant Colony Optimization

    Get PDF
    In the path planning task for autonomous mobile robots, robots should be able to plan their trajectory to leave the start position and reach the goal, safely. There are several path planning approaches for mobile robots in the literature. Ant Colony Optimization algorithms have been investigated for this problem, giving promising results. In this paper, we propose the Max-Min Ant System for Dynamic Path Planning algorithm for the exploratory path planning task for autonomous mobile robots based on topological maps. A topological map is an environment representation whose focus is the main reference points of the environment and their connections. Based on this representation, the path can be composed by a sequence of state/actions pairs, which facilitates the navigability of the path, with no need to have the information of the complete map. The proposed algorithm was evaluated in static and dynamic envi- ronments, showing promising results in both of them. Experiments in dynamic environments show the adaptability of our proposal
    • …
    corecore