829 research outputs found

    Transceiver design for single-cell and multi-cell downlink multiuser MIMO systems

    Full text link
    This thesis designs linear transceivers for the down link multiple user multiple input multiple output single-cell and multiple-cell systems. The transceivers are designed by assuming perfect and imperfect channel state information at the BS and mobile stations (MS). Different signal to interference plus noise ratio, mean square error and rate-based design criteria are considered. These design criteria are formulated by considering total BS, per BS antenna, per user, per symbol or a combination of per BS antenna and per user (symbol) power constraints. To solve these problems generalized down link up link and down link interference duality approaches are proposed. We have also shown that the weighted sum rate maximization problem can be equivalently formulated as weighted sum mean square error minimization problem with additional optimization variables and constraints. We also develop distributed transceiver design algorithms to solve weighted sum rate and mean square error optimization problems for coordinated BS systems. The distributed transceiver design algorithms employ modify matrix fractional minimization and Lagrangian dual decomposition methods.Comment: PhD Thesi

    Capacity Enhancement of Multiuser Wireless Communication System through Adaptive Non-Linear Pre coding

    Get PDF
    Multiuser multiple-input multiple-output (MIMO) nonlinear pre coding techniques face the issue of poor computational scalability of the size of the network. But by this nonlinear pre coding technique the interference is pre-cancelled automatically and also provides better capacity. So in order to reduce the computational burden in this paper, a definitive issue of MU-MIMO scalability is tackled through a non-linear adaptive optimum vector perturbation technique. Unlike the conventional (Vector Perturbation) VP methods, here a novel anterograde tracing is utilized which is usually recognized in the nervous system thus reducing complexity. The tracing of distance can be done through an iterative-optimization procedure. By this novel non-linear technique the capacity is improved to a greater extend which is explained practically. By means of this, the computational complexity is managed to be in the cubic order of the size of MUMIMO, and this mainly derives from the inverse of the channel matrix. The proposed signal processing system has been implemented in the working platform of MATLAB/SIMULINK. The simulation results of proposed communication system and comparison with existing systems shows the significance of the proposed work

    Power allocation and linear precoding for wireless communications with finite-alphabet inputs

    Get PDF
    This dissertation proposes a new approach to maximizing data rate/throughput of practical communication system/networks through linear precoding and power allocation. First, the mutual information or capacity region is derived for finite-alphabet inputs such as phase-shift keying (PSK), pulse-amplitude modulation (PAM), and quadrature amplitude modulation (QAM) signals. This approach, without the commonly used Gaussian input assumptions, complicates the mutual information analysis and precoder design but improves performance when the designed precoders are applied to practical systems and networks. Second, several numerical optimization methods are developed for multiple-input multiple-output (MIMO) multiple access channels, dual-hop relay networks, and point-to-point MIMO systems. In MIMO multiple access channels, an iterative weighted sum rate maximization algorithm is proposed which utilizes an alternating optimization strategy and gradient descent update. In dual-hop relay networks, the structure of the optimal precoder is exploited to develop a two-step iterative algorithm based on convex optimization and optimization on the Stiefel manifold. The proposed algorithm is insensitive to initial point selection and able to achieve a near global optimal precoder solution. The gradient descent method is also used to obtain the optimal power allocation scheme which maximizes the mutual information between the source node and destination node in dual-hop relay networks. For point-to-point MIMO systems, a low complexity precoding design method is proposed, which maximizes the lower bound of the mutual information with discretized power allocation vector in a non-iterative fashion, thus reducing complexity. Finally, performances of the proposed power allocation and linear precoding schemes are evaluated in terms of both mutual information and bit error rate (BER). Numerical results show that at the same target mutual information or sum rate, the proposed approaches achieve 3-10dB gains compared to the existing methods in the medium signal-to-noise ratio region. Such significant gains are also indicated in the coded BER systems --Abstract, page iv-v
    corecore