230 research outputs found

    Models and Algorithms for the Optimisation of Replenishment, Production and Distribution Plans in Industrial Enterprises

    Full text link
    Tesis por compendio[ES] La optimización en las empresas manufactureras es especialmente importante, debido a las grandes inversiones que realizan, ya que a veces estas inversiones no obtienen el rendimiento esperado porque los márgenes de beneficio de los productos son muy ajustados. Por ello, las empresas tratan de maximizar el uso de los recursos productivos y financieros minimizando el tiempo perdido y, al mismo tiempo, mejorando los flujos de los procesos y satisfaciendo las necesidades del mercado. El proceso de planificación es una actividad crítica para las empresas. Esta tarea implica grandes retos debido a los cambios del mercado, las alteraciones en los procesos de producción dentro de la empresa y en la cadena de suministro, y los cambios en la legislación, entre otros. La planificación del aprovisionamiento, la producción y la distribución desempeña un papel fundamental en el rendimiento de las empresas manufactureras, ya que una planificación ineficaz de los proveedores, los procesos de producción y los sistemas de distribución contribuye a aumentar los costes de los productos, a alargar los plazos de entrega y a reducir los beneficios. La planificación eficaz es un proceso complejo que abarca una amplia gama de actividades para garantizar que los equipos, los materiales y los recursos humanos estén disponibles en el momento y el lugar adecuados. Motivados por la complejidad de la planificación en las empresas manufactureras, esta tesis estudia y desarrolla herramientas cuantitativas para ayudar a los planificadores en los procesos de la planificación del aprovisionamiento, producción y distribución. Desde esta perspectiva, se proponen modelos realistas y métodos eficientes para apoyar la toma de decisiones en las empresas industriales, principalmente en las pequeñas y medianas empresas (PYMES). Las aportaciones de esta tesis suponen un avance científico basado en una exhaustiva revisión bibliográfica sobre la planificación del aprovisionamiento, la producción y la distribución que ayuda a comprender los principales modelos y algoritmos utilizados para resolver estos planes, y pone en relieve las tendencias y las futuras direcciones de investigación. También proporciona un marco holístico para caracterizar los modelos y algoritmos centrándose en la planificación de la producción, la programación y la secuenciación. Esta tesis también propone una herramienta de apoyo a la decisión para seleccionar un algoritmo o método de solución para resolver problemas concretos de la planificación del aprovisionamiento, producción y distribución en función de su complejidad, lo que permite a los planificadores no duplicar esfuerzos de modelización o programación de técnicas de solución. Por último, se desarrollan nuevos modelos matemáticos y enfoques de solución de última generación, como los algoritmos matheurísticos, que combinan la programación matemática y las técnicas metaheurísticas. Los nuevos modelos y algoritmos comprenden mejoras en términos de rendimiento computacional, e incluyen características realistas de los problemas del mundo real a los que se enfrentan las empresas de fabricación. Los modelos matemáticos han sido validados con un caso de una importante empresa del sector de la automoción en España, lo que ha permitido evaluar la relevancia práctica de estos novedosos modelos utilizando instancias de gran tamaño, similares a las existentes en la empresa objeto de estudio. Además, los algoritmos matheurísticos han sido probados utilizando herramientas libres y de código abierto. Esto también contribuye a la práctica de la investigación operativa, y proporciona una visión de cómo desplegar estos métodos de solución y el tiempo de cálculo y rendimiento de la brecha que se puede obtener mediante el uso de software libre o de código abierto.[CA] L'optimització a les empreses manufactureres és especialment important, a causa de les grans inversions que realitzen, ja que de vegades aquestes inversions no obtenen el rendiment esperat perquè els marges de benefici dels productes són molt ajustats. Per això, les empreses intenten maximitzar l'ús dels recursos productius i financers minimitzant el temps perdut i, alhora, millorant els fluxos dels processos i satisfent les necessitats del mercat. El procés de planificació és una activitat crítica per a les empreses. Aquesta tasca implica grans reptes a causa dels canvis del mercat, les alteracions en els processos de producció dins de l'empresa i la cadena de subministrament, i els canvis en la legislació, entre altres. La planificació de l'aprovisionament, la producció i la distribució té un paper fonamental en el rendiment de les empreses manufactureres, ja que una planificació ineficaç dels proveïdors, els processos de producció i els sistemes de distribució contribueix a augmentar els costos dels productes, allargar els terminis de lliurament i reduir els beneficis. La planificació eficaç és un procés complex que abasta una àmplia gamma d'activitats per garantir que els equips, els materials i els recursos humans estiguen disponibles al moment i al lloc adequats. Motivats per la complexitat de la planificació a les empreses manufactureres, aquesta tesi estudia i desenvolupa eines quantitatives per ajudar als planificadors en els processos de la planificació de l'aprovisionament, producció i distribució. Des d'aquesta perspectiva, es proposen models realistes i mètodes eficients per donar suport a la presa de decisions a les empreses industrials, principalment a les petites i mitjanes empreses (PIMES). Les aportacions d'aquesta tesi suposen un avenç científic basat en una exhaustiva revisió bibliogràfica sobre la planificació de l'aprovisionament, la producció i la distribució que ajuda a comprendre els principals models i algorismes utilitzats per resoldre aquests plans, i posa de relleu les tendències i les futures direccions de recerca. També proporciona un marc holístic per caracteritzar els models i algorismes centrant-se en la planificació de la producció, la programació i la seqüenciació. Aquesta tesi també proposa una eina de suport a la decisió per seleccionar un algorisme o mètode de solució per resoldre problemes concrets de la planificació de l'aprovisionament, producció i distribució en funció de la seua complexitat, cosa que permet als planificadors no duplicar esforços de modelització o programació de tècniques de solució. Finalment, es desenvolupen nous models matemàtics i enfocaments de solució d'última generació, com ara els algoritmes matheurístics, que combinen la programació matemàtica i les tècniques metaheurístiques. Els nous models i algoritmes comprenen millores en termes de rendiment computacional, i inclouen característiques realistes dels problemes del món real a què s'enfronten les empreses de fabricació. Els models matemàtics han estat validats amb un cas d'una important empresa del sector de l'automoció a Espanya, cosa que ha permés avaluar la rellevància pràctica d'aquests nous models utilitzant instàncies grans, similars a les existents a l'empresa objecte d'estudi. A més, els algorismes matheurístics han estat provats utilitzant eines lliures i de codi obert. Això també contribueix a la pràctica de la investigació operativa, i proporciona una visió de com desplegar aquests mètodes de solució i el temps de càlcul i rendiment de la bretxa que es pot obtindre mitjançant l'ús de programari lliure o de codi obert.[EN] Optimisation in manufacturing companies is especially important, due to the large investments they make, as sometimes these investments do not obtain the expected return because the profit margins of products are very tight. Therefore, companies seek to maximise the use of productive and financial resources by minimising lost time and, at the same time, improving process flows while meeting market needs. The planning process is a critical activity for companies. This task involves great challenges due to market changes, alterations in production processes within the company and in the supply chain, and changes in legislation, among others. Planning of replenishment, production and distribution plays a critical role in the performance of manufacturing companies because ineffective planning of suppliers, production processes and distribution systems contributes to higher product costs, longer lead times and less profits. Effective planning is a complex process that encompasses a wide range of activities to ensure that equipment, materials and human resources are available in the right time and the right place. Motivated by the complexity of planning in manufacturing companies, this thesis studies and develops quantitative tools to help planners in the replenishment, production and delivery planning processes. From this perspective, realistic models and efficient methods are proposed to support decision making in industrial companies, mainly in small- and medium-sized enterprises (SMEs). The contributions of this thesis represent a scientific breakthrough based on a comprehensive literature review about replenishment, production and distribution planning that helps to understand the main models and algorithms used to solve these plans, and highlights trends and future research directions. It also provides a holistic framework to characterise models and algorithms by focusing on production planning, scheduling and sequencing. This thesis also proposes a decision support tool for selecting an algorithm or solution method to solve concrete replenishment, production and distribution planning problems according to their complexity, which allows planners to not duplicate efforts modelling or programming solution techniques. Finally, new state-of-the-art mathematical models and solution approaches are developed, such as matheuristic algorithms, which combine mathematical programming and metaheuristic techniques. The new models and algorithms comprise improvements in computational performance terms, and include realistic features of real-world problems faced by manufacturing companies. The mathematical models have been validated with a case of an important company in the automotive sector in Spain, which allowed to evaluate the practical relevance of these novel models using large instances, similarly to those existing in the company under study. In addition, the matheuristic algorithms have been tested using free and open-source tools. This also helps to contribute to the practice of operations research, and provides insight into how to deploy these solution methods and the computational time and gap performance that can be obtained by using free or open-source software.This work would not have been possible without the following funding sources: Conselleria de Educación, Investigación, Cultura y Deporte, Generalitat Valenciana for hiring predoctoral research staff with Grant (ACIF/2018/170) and the European Social Fund with the Grant Operational Programme of FSE 2014-2020. Conselleria de Educación, Investigación, Cultura y Deporte, Generalitat Valenciana for predoctoral contract students to stay in research centers outside the research centers outside the Valencian Community (BEFPI/2021/040) and the European Social Fund.Guzmán Ortiz, BE. (2022). Models and Algorithms for the Optimisation of Replenishment, Production and Distribution Plans in Industrial Enterprises [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/187461Compendi

    A hybrid non-dominated sorting genetic algorithm for a multi-objective demand-side management problem in a smart building

    Get PDF
    One of the most significant challenges facing optimization models for the demand-side management (DSM) is obtaining feasible solutions in a shorter time. In this paper, the DSM is formulated in a smart building as a linear constrained multi-objective optimization model to schedule both electrical and thermal loads over one day. Two objectives are considered, energy cost and discomfort caused by allowing flexibility of loads within an acceptable comfort range. To solve this problem, an integrative matheuristic is proposed by combining a multi-objective evolutionary algorithm as a master level with an exact solver as a slave level. To cope with the non-triviality of feasible solutions representation and NP-hardness of our optimization model, in this approach discrete decision variables are encoded as partial chromosomes and the continuous decision variables are determined optimally by an exact solver. This matheuristic is relevant for dealing with the constraints of our optimization model. To validate the performance of our approach, a number of simulations are performed and compared with the goal programming under various scenarios of cold and hot weather conditions. It turns out that our approach outperforms the goal programming with respect to some comparison metrics including the hypervolume difference, epsilon indicator, number of the Pareto solutions found, and computational time metrics

    Liner Service Network Design

    Get PDF

    Risk-Based Optimal Scheduling for the Predictive Maintenance of Railway Infrastructure

    Get PDF
    In this thesis a risk-based decision support system to schedule the predictive maintenance activities, is proposed. The model deals with the maintenance planning of a railway infrastructure in which the due-dates are defined via failure risk analysis.The novelty of the approach consists of the risk concept introduction in railway maintenance scheduling, according to ISO 55000 guidelines, thus implying that the maintenance priorities are based on asset criticality, determined taking into account the relevant failure probability, related to asset degradation conditions, and the consequent damages

    Integrated Rolling Stock Planning for Suburban Passenger Railways

    Get PDF

    Models and Matheuristics for Large-Scale Combinatorial Optimization Problems

    Get PDF
    Combinatorial optimization deals with efficiently determining an optimal (or at least a good) decision among a finite set of alternatives. In business administration, such combinatorial optimization problems arise in, e.g., portfolio selection, project management, data analysis, and logistics. These optimization problems have in common that the set of alternatives becomes very large as the problem size increases, and therefore an exhaustive search of all alternatives may require a prohibitively long computation time. Moreover, due to their combinatorial nature no closed-form solutions to these problems exist. In practice, a common approach to tackle combinatorial optimization problems is to formulate them as mathematical models and to solve them using a mathematical programming solver (cf., e.g., Bixby et al. 1999, Achterberg et al. 2020). For small-scale problem instances, the mathematical models comprise a manageable number of variables and constraints such that mathematical programming solvers are able to devise optimal solutions within a reasonable computation time. For large-scale problem instances, the number of variables and constraints becomes very large which extends the computation time required to find an optimal solution considerably. Therefore, despite the continuously improving performance of mathematical programming solvers and computing hardware, the availability of mathematical models that are efficient in terms of the number of variables and constraints used is of crucial importance. Another frequently used approach to address combinatorial optimization problems are matheuristics. Matheuristics decompose the considered optimization problem into subproblems, which are then formulated as mathematical models and solved with the help of a mathematical programming solver. Matheuristics are particularly suitable for situations where it is required to find a good, but not necessarily an optimal solution within a short computation time, since the speed of the solution process can be controlled by choosing an appropriate size of the subproblems. This thesis consists of three papers on large-scale combinatorial optimization problems. We consider a portfolio optimization problem in finance, a scheduling problem in project management, and a clustering problem in data analysis. For these problems, we present novel mathematical models that require a relatively small number of variables and constraints, and we develop matheuristics that are based on novel problem-decomposition strategies. In extensive computational experiments, the proposed models and matheuristics performed favorably compared to state-of-the-art models and solution approaches from the literature. In the first paper, we consider the problem of determining a portfolio for an enhanced index-tracking fund. Enhanced index-tracking funds aim to replicate the returns of a particular financial stock-market index as closely as possible while outperforming that index by a small positive excess return. Additionally, we consider various real-life constraints that may be imposed by investors, stock exchanges, or investment guidelines. Since enhanced index-tracking funds are particularly attractive to investors if the index comprises a large number of stocks and thus is well diversified, it is of particular interest to tackle large-scale problem instances. For this problem, we present two matheuristics that consist of a novel construction matheuristic, and two different improvement matheuristics that are based on the concepts of local branching (cf. Fischetti and Lodi 2003) and iterated greedy heuristics (cf., e.g., Ruiz and Stützle 2007). Moreover, both matheuristics are based on a novel mathematical model for which we provide insights that allow to remove numerous redundant variables and constraints. We tested both matheuristics in a computational experiment on problem instances that are based on large stock-market indices with up to 9,427 constituents. It turns out that our matheuristics yield better portfolios than benchmark approaches in terms of out-of-sample risk-return characteristics. In the second paper, we consider the problem of scheduling a set of precedence-related project activities, each of which requiring some time and scarce resources during their execution. For each activity, alternative execution modes are given, which differ in the duration and the resource requirements of the activity. Sought is a start time and an execution mode for each activity, such that all precedence relationships are respected, the required amount of each resource does not exceed its prescribed capacity, and the project makespan is minimized. For this problem, we present two novel mathematical models, in which the number of variables remains constant when the range of the activities' durations and thus also the planning horizon is increased. Moreover, we enhance the performance of the proposed mathematical models by eliminating some symmetric solutions from the search space and by adding some redundant sequencing constraints for activities that cannot be processed in parallel. In a computational experiment based on instances consisting of activities with durations ranging from one up to 260 time units, the proposed models consistently outperformed all reference models from the literature. In the third paper, we consider the problem of grouping similar objects into clusters, where the similarity between a pair of objects is determined by a distance measure based on some features of the objects. In addition, we consider constraints that impose a maximum capacity for the clusters, since the size of the clusters is often restricted in practical clustering applications. Furthermore, practical clustering applications are often characterized by a very large number of objects to be clustered. For this reason, we present a matheuristic based on novel problem-decomposition strategies that are specifically designed for large-scale problem instances. The proposed matheuristic comprises two phases. In the first phase, we decompose the considered problem into a series of generalized assignment problems, and in the second phase, we decompose the problem into subproblems that comprise groups of clusters only. In a computational experiment, we tested the proposed matheuristic on problem instances with up to 498,378 objects. The proposed matheuristic consistently outperformed the state-of-the-art approach on medium- and large-scale instances, while matching the performance for small-scale instances. Although we considered three specific optimization problems in this thesis, the proposed models and matheuristics can be adapted to related optimization problems with only minor modifications. Examples for such related optimization problems are the UCITS-constrained index-tracking problem (cf, e.g., Strub and Trautmann 2019), which consists of determining the portfolio of an investment fund that must comply with regulatory restrictions imposed by the European Union, the multi-site resource-constrained project scheduling problem (cf., e.g., Laurent et al. 2017), which comprises the scheduling of a set of project activities that can be executed at alternative sites, or constrained clustering problems with must-link and cannot-link constraints (cf., e.g., González-Almagro et al. 2020)

    Internet of Things in urban waste collection

    Get PDF
    Nowadays, the waste collection management has an important role in urban areas. This paper faces this issue and proposes the application of a metaheuristic for the optimization of a weekly schedule and routing of the waste collection activities in an urban area. Differently to several contributions in literature, fixed periodic routes are not imposed. The results significantly improve the performance of the company involved, both in terms of resources used and costs saving

    Matheuristics for robust optimization: application to real-world problems

    Get PDF
    In the field of optimization, the perspective that the problem data are subject to uncertainty is gaining more and more interest. The uncertainty in an optimization problem represents the measurement errors during the phase of collecting data, or unforeseen changes in the environment while implementing the optimal solution in practice. When the uncertainty is ignored, an optimal solution according to the mathematical model can turn out to be far from optimal, or even infeasible in reality. Robust optimization is an umbrella term for mathematical modelling methodologies focused on finding solutions that are reliable against the data perturbations caused by the uncertainty. Among the relatively more recent robust optimization methodologies, an important concept studied is the degree of conservativeness, which can be explained as the amount of targeted reliability against the uncertainty while looking for a solution. Because the reliability and solution cost usually end up being conflicting objectives, it is important for the decision maker to be able to configure the conservativeness degree, so that the desired balance between the cost and reliability can be obtained, and the most practical solution can be found for the problem at hand. The robust optimization methodologies are typically proposed within the framework of mathematical programming (i.e. linear programming, integer programming). Thanks to the nature of mathematical programming, these methodologies can find the exact optimum, according to the various solution evaluation perspectives they have. However, dependence on mathematical programming might also mean that such methodologies will require too much memory from the computer, and also too much execution time, when large-scale optimization problems are considered. A common strategy to avoid the big memory and execution time requirements of mathematical programming is to use metaheuristic optimization algorithms for solving large problem instances.In this research, we propose an approach for solving medium-to-large-sized robust optimization problem instances. The methodology we propose is a matheuristic (i.e. a hybridization of mathematical programming and metaheuristic). In the matheuristic approach we propose, the mathematical programming part handles the uncertainty, and the metaheuristic part handles the exploration of the solution space. Since the exploration of the solution space is entrusted onto the metaheuristic search, we can obtain practical near-optimal solutions while avoiding the big memory and time requirements that might be brought by pure mathematical programming methods. The mathematical programming part is used for making the metaheuristic favor the solutions which have more protections against the uncertainty. Another important characteristic of the methodology we propose is concurrency with information exchange: we concurrently execute multiple processes of the matheuristic algorithm, each process taking the uncertainty into account with a different degree of conservativeness. During the execution, these processes exchange their best solutions. So, if a process is stuck on a bad solution, it can realize that there is a better solution available thanks to the information exchange, and it can get unstuck. In the end, the solutions of these processes are collected into a solution pool. This solution pool provides the decision maker with alternative solutions with different costs and conservativeness degrees. Having a solution pool available at the end, the decision maker can make the most practical choice according to the problem at hand. In this thesis, we first discuss our studies in the field of robust optimization: a heuristic approach for solving a minimum power multicasting problem in wireless actuator networks under actuator distance uncertainty, and a linear programming approach for solving an aggregate blending problem in the construction industry, where the amounts of components found in aggregates are subject to uncertainty. These studies demonstrate the usage of mathematical programming for handling the uncertainty. We then discuss our studies in the field of matheuristics: a matheuristic approach for solving a large-scale energy management problem, and then a matheuristic approach for solving large instances of minimum power multicasting problem. In these studies, the usage of metaheuristics for handling the large problem instances is emphasized. In our study of solving minimum power multicasting problem, we also incorporate the mechanism of information exchange between different solvers. Later, we discuss the main matheuristic approach that we propose in this thesis. We first apply our matheuristic approach on a well-known combinatorial optimization problem: capacitated vehicle routing problem, by using an ant colony optimization as the metaheuristic part. Finally, we discuss the generality of the methodology that we propose: we suggest that it can be used as a general framework on various combinatorial optimization problems, by choosing the most appropriate metaheuristic algorithm according to the nature of the problem
    corecore