3,277 research outputs found

    Bayesian Inference in Estimation of Distribution Algorithms

    Get PDF
    Metaheuristics such as Estimation of Distribution Algorithms and the Cross-Entropy method use probabilistic modelling and inference to generate candidate solutions in optimization problems. The model fitting task in this class of algorithms has largely been carried out to date based on maximum likelihood. An alternative approach that is prevalent in statistics and machine learning is to use Bayesian inference. In this paper, we provide a framework for the application of Bayesian inference techniques in probabilistic model-based optimization. Based on this framework, a simple continuous Bayesian Estimation of Distribution Algorithm is described. We evaluate and compare this algorithm experimentally with its maximum likelihood equivalent, UMDAG c

    06061 Abstracts Collection -- Theory of Evolutionary Algorithms

    Get PDF
    From 05.02.06 to 10.02.06, the Dagstuhl Seminar 06061 ``Theory of Evolutionary Algorithms\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Modeling and Simulation of Biological Systems through Electronic Design Automation techniques

    Get PDF
    Modeling and simulation of biological systems is a key requirement for integrating invitro and in-vivo experimental data. In-silico simulation allows testing different experimental conditions, thus helping in the discovery of the dynamics that regulate the system. These dynamics include errors in the cellular information processing that are responsible for diseases such as cancer, autoimmunity, and diabetes as well as drug effects to the system (Gonalves, 2013). In this context, modeling approaches can be classified into two categories: quantitative and qualitative models. Quantitative modeling allows for a natural representation of molecular and gene networks and provides the most precise prediction. Nevertheless, the lack of kinetic data (and of quantitative data in general) hampers its use for many situations (Le Novere, 2015). In contrast, qualitative models simplify the biological reality and are often able to reproduce the system behavior. They cannot describe actual concentration levels nor realistic time scales. As a consequence, they cannot be used to explain and predict the outcome of biological experiments that yield quantitative data. However, given a biological network consisting of input (e.g., receptors), intermediate, and output (e.g., transcription factors) signals, they allow studying the input-output relationships through discrete simulation (Samaga, 2013). Boolean models are gaining an increasing interest in reproducing dynamic behaviors, understanding processes, and predicting emerging properties of cellular signaling networks through in-silico experiments. They are emerging as a valid alternative to the quantitative approaches (i.e., based on ordinary differential equations) for exploratory modeling when little is known about reaction kinetics or equilibrium constants in the context of gene expression or signaling. Even though several approaches and software have been recently proposed for logic modeling of biological systems, they are limited to specific contexts and they lack of automation in analyzing biological properties such as complex attractors, and molecule vulnerability. This thesis proposes a platform based on Electronic Design Automation (EDA) technologies for qualitative modeling and simulation of Biological Systems. It aims at overtaking limitations that affect the most recent qualitative tools

    Recent achievements in ab initio modelling of liquid water

    Full text link
    The application of newly developed first-principle modeling techniques to liquid water deepens our understanding of the microscopic origins of its unusual macroscopic properties and behaviour. Here, we review two novel ab initio computational methods: second-generation Car-Parrinello molecular dynamics and decomposition analysis based on absolutely localized molecular orbitals. We show that these two methods in combination not only enable ab initio molecular dynamics simulations on previously inaccessible time and length scales, but also provide unprecedented insights into the nature of hydrogen bonding between water molecules. We discuss recent applications of these methods to water clusters and bulk water.Comment: 23 pages, 17 figure

    Evolutionary algorithms to optimize low-thrust trajectory design in spacecraft orbital precession mission

    Get PDF
    In space environment, perturbations make the spacecraft lose its predefined orbit in space. One of these undesirable changes is the in-plane rotation of space orbit, denominated as orbital precession. To overcome this problem, one option is to correct the orbit direction by employing low-thrust trajectories. However, in addition to the orbital perturbation acting on the spacecraft, a number of parameters related to the spacecraft and its propulsion system must be optimized. This article lays out the trajectory optimization of orbital precession missions using Evolutionary Algorithms (EAs). In this research, the dynamics of spacecraft in the presence of orbital perturbation is modeled. The optimization approach is employed based on the parametrization of the problem according to the space mission. Numerous space mission cases have been studied in low and middle Earth orbits, where various types of orbital perturbations are acted on spacecraft. Consequently, several EAs are employed to solve the optimization problem. Results demonstrate the practicality of different EAs, along with comparing their convergence rates. With a unique trajectory model, EAs prove to be an efficient, reliable and versatile optimization solution, capable of being implemented in conceptual and preliminary design of spacecraft for orbital precession missions.IT-609-13 2013-2018, TIN2016-78365-

    The role of data in model building and prediction: a survey through examples

    Get PDF
    The goal of Science is to understand phenomena and systems in order to predict their development and gain control over them. In the scientific process of knowledge elaboration, a crucial role is played by models which, in the language of quantitative sciences, mean abstract mathematical or algorithmical representations. This short review discusses a few key examples from Physics, taken from dynamical systems theory, biophysics, and statistical mechanics, representing three paradigmatic procedures to build models and predictions from available data. In the case of dynamical systems we show how predictions can be obtained in a virtually model-free framework using the methods of analogues, and we briefly discuss other approaches based on machine learning methods. In cases where the complexity of systems is challenging, like in biophysics, we stress the necessity to include part of the empirical knowledge in the models to gain the minimal amount of realism. Finally, we consider many body systems where many (temporal or spatial) scales are at play-and show how to derive from data a dimensional reduction in terms of a Langevin dynamics for their slow components
    corecore