1,408 research outputs found

    Supersymmetric Field-Theoretic Models on a Supermanifold

    Get PDF
    We propose the extension of some structural aspects that have successfully been applied in the development of the theory of quantum fields propagating on a general spacetime manifold so as to include superfield models on a supermanifold. We only deal with the limited class of supermanifolds which admit the existence of a smooth body manifold structure. Our considerations are based on the Catenacci-Reina-Teofillatto-Bryant approach to supermanifolds. In particular, we show that the class of supermanifolds constructed by Bonora-Pasti-Tonin satisfies the criterions which guarantee that a supermanifold admits a Hausdorff body manifold. This construction is the closest to the physicist's intuitive view of superspace as a manifold with some anticommuting coordinates, where the odd sector is topologically trivial. The paper also contains a new construction of superdistributions and useful results on the wavefront set of such objects. Moreover, a generalization of the spectral condition is formulated using the notion of the wavefront set of superdistributions, which is equivalent to the requirement that all of the component fields satisfy, on the body manifold, a microlocal spectral condition proposed by Brunetti-Fredenhagen-K\"ohler.Comment: Final version to appear in J.Math.Phy

    Applied Fracture Mechanics

    Get PDF
    The book "Applied Fracture Mechanics" presents a collection of articles on application of fracture mechanics methods to materials science, medicine, and engineering. In thirteen chapters, a wide range of topics is discussed, including strength of biological tissues, safety of nuclear reactor components, fatigue effects in pipelines, environmental effects on fracture among others. In addition, the book presents mathematical and computational methods underlying the fracture mechanics applications, and also developments in statistical modeling of fatigue. The work presented in this book will be useful, effective, and beneficial to mechanical engineers, civil engineers, and material scientists from industry, research, and education

    Plasma processes in pulsar environments

    Get PDF
    The aim of this thesis is to study coherent plasma effects and collective plasma processes in pulsar environments. Pulsars are one of the most enigmatic objects in the universe. Formed in supernova explosions, pulsars are rapidly rotating neutron stars identified by their periodically pulsed electromagnetic emission. The source of the radiation is believed to be associated with the electron-positron (pair) plasma populating the pulsar magnetosphere. The theory of pulsar radiation is still in its infancy and there is lack of understanding about the energetic processes involved. The initial aim of this thesis is to study a possible emission mechanism in which electrostatic oscillations are coupled to propagating electromagnetic waves by a magnetic field inhomogeneity, thus creating a source of radiation in the pulsar magnetosphere. The full nonlinear equations in cylindrical geometry for a streaming cold pair plasma are solved numerically, together with Maxwell's equations, using a Finite-Difference Time Domain method. Electrostatic oscillations are induced in a streaming plasma in the presence of a non-uniform magnetic field, and the resulting electromagnetic waves are modelled self-consistently. Also presented is the linear perturbation analysis of these model equations perturbed from a dynamical equilibrium in order to probe the fundamental modes present in the system. These simulations successfully exhibit the coupling mechanism and the nonlinear interaction between electromagnetic waves and independent plasma oscillations, confirming the importance of coherent plasma effects and collective plasma processes in the pulsar magnetosphere. The observed electromagnetic signature is characterised by the nature of the emission mechanism and possibly by the menagerie of dust it encounters as it propagates through the surrounding supernova remnant. Supernova remnants are composed of multi-species electron-ion dusty plasmas. Conventional modelling of dust growth in this environment is based upon coagulation and nucleation of gas phase material. The second aim of this thesis is to study a possible spheroidal dust growth mechanism via plasma deposition. Dust grains immersed in a plasma acquire a net negative charge forming a plasma sheath. Ions are accelerated from the bulk plasma into the sheath and are deposited on the surface of the grain altering its shape and size. Grains with an elliptical geometry have a non-radial electric field and further anisotropic growth occurs if the deposited ions are non-inertial. In reality the extent of such growth depends upon the initial kinetic energy of the ions and the magnitude of the electric field in the sheath. Laplace's equation for the electric field for a range grain eccentricities is numerically solved using a bespoke finite difference method, the dynamics of the ions in the sheath are solved, showing how elliptical growth is related to the initial eccentricity and size of the seed relative to the sheath length

    Mehrfach-limitierte Lindenmayer-Systeme

    Get PDF
    The theory of L systems originated with the biologist and mathematician Aristide Lindenmayer. His original goal was to provide mathematical models for the simultaneous development of cells in filamentous organisms. Since L systems may be viewed as rewriting systems, their generated languages, i.e., sets of organisms encoded by strings, are also subject to formal language theory, which aims to classify formal languages as well as their generating mechanisms according to various properties, such as generative power, decidability, etc. D. Wätjen introduced and studied k-limited L systems in order to combine the purely sequential mode of rewriting and the purely parallel mode of rewriting in context-free grammars, respectively, L systems. In biology, these systems may be interpreted as organisms, for which the simultaneous growth of cells is restricted by the supply of some resources of food being limited by some finite value k. In this thesis the constraint of a common limit k is relaxed in favor of individual resource limits k(a) for every cell-type a, which yields the new notion of multi-limited L system. The language families generated by such systems are then classified according to their sets of limits k(a). At first, an intuitive approach to the different mechanisms of the L system variants is provided by presenting a method for the graphical interpretation of L systems, the so-called turtle interpretation. Suitable computer programs implementing a turtle interpreter as well as free-programmable simulators for multi-limited, k-limited, and uniformly k-limited L systems, are developed and their source-code is appended. Subsequently, language families generated by multi-limited L systems are compared to each other, to Wätjen's k-limited as well as to non-limited language families, and to the families of the Chomsky Hierarchy. Besides asymptotically comparing the generative power of multi-limited L systems to that of the underlying non-limited L systems, also their closure properties are investigated.Der Biologe und Mathematiker Aristide Lindenmayer begründete die Theorie der L-Systeme. Das ursprüngliche Ziel dieser Theorie ist die Bereitstellung mathematischer Modelle zur Untersuchung des simultanen Zellwachstums fadenartiger Organismen. Da L-Systeme als eine Art von Ersetzungssystemen definiert sind, sind ihre erzeugten Sprachen, d.h. die Mengen der durch Zeichenketten beschriebenen Organismen, ebenfalls Gegenstand der Theorie der formalen Sprachen. Diese Theorie klassifiziert formale Sprachen sowie ihre Erzeugungsmechanismen gemäß ihrer Eigenschaften, wie z.B. Erzeugungsmächtigkeit oder Entscheidbarkeit. Als ein Sprachen-erzeugender Mechanismus, der zwischen der rein sequentiellen Ersetzung kontextfreier Grammatiken und der rein parallelen Ersetzung von L-Systemen liegt, sind k-limitierte L-Systeme von D. Wätjen eingeführt und untersucht worden. In der Biologie können diese Systeme als Organismen interpretiert werden, deren simultanes Zellwachstum beschränkt ist durch individuelle Nahrungsvorräte mit einer einheitlichen endlichen Kapazität k. Die in dieser Arbeit betrachteten mehrfach-limitierten L-Systeme bilden eine Verallgemeinerung der k-limitierten L-Systeme, indem sie für jeden Zelltyp a einen individuellen Nahrungsvorrat mit einer spezifischen Kapazität k(a) anstelle der einheitlichen Kapazität k vorsehen. Diese Arbeit führt mehrfach-limitierte L-Systeme ein und definiert eine geeignete Kategorisierung der von ihnen erzeugten Sprachfamilien anhand der erlaubten Mengen von Limits k(a). Zunächst wird ein intuitiver Zugang zu den verschiedenen Mechanismen der L-System-Varianten ermöglicht, indem eine Methode zur grafischen Interpretation von L-Systemen, die sogenannte Turtle-Interpretation, vorgestellt wird. Hierzu werden geeignete Computer-Programme für einen Turtle-Interpreter sowie für frei programmierbare Simulatoren von mehrfach-limitierten, k-limitierten sowie uniform k-limitierten L-Systemen erstellt und ihr Quell-Code zur Verfügung gestellt. Die von mehrfach-limitierten L-Systemen erzeugten Sprachfamilien werden bzgl. ihrer Inklusionseigenschaften untereinander, mit Wätjens k-limitierten Sprachfamilien, mit den nicht-limitierten Sprachfamilien sowie mit der Chomsky Hierarchie verglichen. Die Erzeugungsmächtigkeit von mehrfach-limitierten L-Systemen wird asymptotisch verglichen mit den jeweils unterliegenden nicht-limitierten L-Systemen. Des weiteren werden die Abschlusseigenschaften der mehrfach-limitierten L-Systeme untersucht

    Lattice-Gas Cellular Automata In Modeling Biological Pattern Formation

    Get PDF
    There are several phenomena present in the physical world which can be defined or predicted by specific models. Cellular automata are basic mathematical models for characterization of natural systems by generating simple components and their local interactions. These models are specified on simple updating rules yet demonstrate complex behavior of physical phenomena. Besides this, lattice-gas cellular automata models go one step further and differ from cellular automata by having split updating rule into two parts as collision and propagation. In this study, the goal is to analyze hexagonal lattice-gas cellular automata with single cell type by using agent-based modeling and simulate the model with NetLogo to observe pattern formation. The model examination is focused on the two parameters for stability analysis. The results show that if there is a pattern formation in the model, the system is unstable, and if the patches are smaller and lighter patches, it is stable. Furthermore, the analysis for the choice of particle density and adhesion coefficient displayed that they are the main decision-mechanisms for general structure

    Effects of friction and heat conduction on sound propagation in ducts

    Get PDF
    The theory of sound propagation is examined in a viscous, heat-conducting fluid, initially at rest and in a uniform state, and contained in a rigid, impermeable duct with isothermal walls. Topics covered include: (1) theoretical formulation of the small amplitude fluctuating motions of a viscous, heat-conducting and compressible fluid; (2) sound propagation in a two dimensional duct; and (3) perturbation study of the inplane modes

    Acta Cybernetica : Volume 14. Number 4.

    Get PDF
    corecore