7 research outputs found

    A Material Computation Perspective on Audio Mosaicing and Gestural Conditioning

    Get PDF
    ABSTRACT This paper discusses an approach to instrument conception that is based on a careful consideration of the coupling of tactile and sonic gestural action across the layers of physical and computational material in coordinated dynamical variation. To this end we propose a design approach that not only considers the materiality of the instrument, but leverages it as a central part of the conception of the sonic quality, the control structure, and what generally falls under the umbrella of "mapping". This extended computational matter perspective scaffolds a holistic approach to understanding an "instrument" as gestural engagement through physical material, sonic variation, and somatic activity. We present some concrete musical and installation performances that have benefited from this approach to instrument design

    bEADS:Extended Actuated Digital Shaker

    Get PDF
    While there are a great variety of digital musical interfaces available to the working musician, few o er the level of immediate, nuanced and instinctive control that one nds in an acoustic shaker. bEADS is a prototype of a digital musical instrument that utilises the gestural vocabulary associated with shaken idiophones and expands on the techniques and sonic possibilities associated with them. By using a bespoke physically informed synthesis engine, in conjunction with accelerometer and pressure sensor data, an actuated handheld instrument has been built that allows for quickly switching between widely di ering percussive sound textures. The prototype has been evaluated by three experts with di erent levels of involvement in professional music making

    A Multidimensional Sketching Interface for Visual Interaction with Corpus-Based Concatenative Sound Synthesis

    Get PDF
    The present research sought to investigate the correspondence between auditory and visual feature dimensions and to utilise this knowledge in order to inform the design of audio-visual mappings for visual control of sound synthesis. The first stage of the research involved the design and implementation of Morpheme, a novel interface for interaction with corpus-based concatenative synthesis. Morpheme uses sketching as a model for interaction between the user and the computer. The purpose of the system is to facilitate the expression of sound design ideas by describing the qualities of the sound to be synthesised in visual terms, using a set of perceptually meaningful audio-visual feature associations. The second stage of the research involved the preparation of two multidimensional mappings for the association between auditory and visual dimensions.The third stage of this research involved the evaluation of the Audio-Visual (A/V) mappings and of Morpheme’s user interface. The evaluation comprised two controlled experiments, an online study and a user study. Our findings suggest that the strength of the perceived correspondence between the A/V associations prevails over the timbre characteristics of the sounds used to render the complementary polar features. Hence, the empirical evidence gathered by previous research is generalizable/ applicable to different contexts and the overall dimensionality of the sound used to render should not have a very significant effect on the comprehensibility and usability of an A/V mapping. However, the findings of the present research also show that there is a non-linear interaction between the harmonicity of the corpus and the perceived correspondence of the audio-visual associations. For example, strongly correlated cross-modal cues such as size-loudness or vertical position-pitch are affected less by the harmonicity of the audio corpus in comparison to weaker correlated dimensions (e.g. texture granularity-sound dissonance). No significant differences were revealed as a result of musical/audio training. The third study consisted of an evaluation of Morpheme’s user interface were participants were asked to use the system to design a sound for a given video footage. The usability of the system was found to be satisfactory.An interface for drawing visual queries was developed for high level control of the retrieval and signal processing algorithms of concatenative sound synthesis. This thesis elaborates on previous research findings and proposes two methods for empirically driven validation of audio-visual mappings for sound synthesis. These methods could be applied to a wide range of contexts in order to inform the design of cognitively useful multi-modal interfaces and representation and rendering of multimodal data. Moreover this research contributes to the broader understanding of multimodal perception by gathering empirical evidence about the correspondence between auditory and visual feature dimensions and by investigating which factors affect the perceived congruency between aural and visual structures

    A Multidimensional Sketching Interface for Visual Interaction with Corpus-Based Concatenative Sound Synthesis

    Get PDF
    The present research sought to investigate the correspondence between auditory and visual feature dimensions and to utilise this knowledge in order to inform the design of audio-visual mappings for visual control of sound synthesis. The first stage of the research involved the design and implementation of Morpheme, a novel interface for interaction with corpus-based concatenative synthesis. Morpheme uses sketching as a model for interaction between the user and the computer. The purpose of the system is to facilitate the expression of sound design ideas by describing the qualities of the sound to be synthesised in visual terms, using a set of perceptually meaningful audio-visual feature associations. The second stage of the research involved the preparation of two multidimensional mappings for the association between auditory and visual dimensions.The third stage of this research involved the evaluation of the Audio-Visual (A/V) mappings and of Morpheme’s user interface. The evaluation comprised two controlled experiments, an online study and a user study. Our findings suggest that the strength of the perceived correspondence between the A/V associations prevails over the timbre characteristics of the sounds used to render the complementary polar features. Hence, the empirical evidence gathered by previous research is generalizable/ applicable to different contexts and the overall dimensionality of the sound used to render should not have a very significant effect on the comprehensibility and usability of an A/V mapping. However, the findings of the present research also show that there is a non-linear interaction between the harmonicity of the corpus and the perceived correspondence of the audio-visual associations. For example, strongly correlated cross-modal cues such as size-loudness or vertical position-pitch are affected less by the harmonicity of the audio corpus in comparison to weaker correlated dimensions (e.g. texture granularity-sound dissonance). No significant differences were revealed as a result of musical/audio training. The third study consisted of an evaluation of Morpheme’s user interface were participants were asked to use the system to design a sound for a given video footage. The usability of the system was found to be satisfactory.An interface for drawing visual queries was developed for high level control of the retrieval and signal processing algorithms of concatenative sound synthesis. This thesis elaborates on previous research findings and proposes two methods for empirically driven validation of audio-visual mappings for sound synthesis. These methods could be applied to a wide range of contexts in order to inform the design of cognitively useful multi-modal interfaces and representation and rendering of multimodal data. Moreover this research contributes to the broader understanding of multimodal perception by gathering empirical evidence about the correspondence between auditory and visual feature dimensions and by investigating which factors affect the perceived congruency between aural and visual structures

    « Extending interactivity ». Atti del XXI CIM - Colloquio di Informatica Musicale

    Get PDF

    Presence 2005: the eighth annual international workshop on presence, 21-23 September, 2005 University College London (Conference proceedings)

    Get PDF
    OVERVIEW (taken from the CALL FOR PAPERS) Academics and practitioners with an interest in the concept of (tele)presence are invited to submit their work for presentation at PRESENCE 2005 at University College London in London, England, September 21-23, 2005. The eighth in a series of highly successful international workshops, PRESENCE 2005 will provide an open discussion forum to share ideas regarding concepts and theories, measurement techniques, technology, and applications related to presence, the psychological state or subjective perception in which a person fails to accurately and completely acknowledge the role of technology in an experience, including the sense of 'being there' experienced by users of advanced media such as virtual reality. The concept of presence in virtual environments has been around for at least 15 years, and the earlier idea of telepresence at least since Minsky's seminal paper in 1980. Recently there has been a burst of funded research activity in this area for the first time with the European FET Presence Research initiative. What do we really know about presence and its determinants? How can presence be successfully delivered with today's technology? This conference invites papers that are based on empirical results from studies of presence and related issues and/or which contribute to the technology for the delivery of presence. Papers that make substantial advances in theoretical understanding of presence are also welcome. The interest is not solely in virtual environments but in mixed reality environments. Submissions will be reviewed more rigorously than in previous conferences. High quality papers are therefore sought which make substantial contributions to the field. Approximately 20 papers will be selected for two successive special issues for the journal Presence: Teleoperators and Virtual Environments. PRESENCE 2005 takes place in London and is hosted by University College London. The conference is organized by ISPR, the International Society for Presence Research and is supported by the European Commission's FET Presence Research Initiative through the Presencia and IST OMNIPRES projects and by University College London

    Wearable computing and contextual awareness

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 1999.Includes bibliographical references (leaves 231-248).Computer hardware continues to shrink in size and increase in capability. This trend has allowed the prevailing concept of a computer to evolve from the mainframe to the minicomputer to the desktop. Just as the physical hardware changes, so does the use of the technology, tending towards more interactive and personal systems. Currently, another physical change is underway, placing computational power on the user's body. These wearable machines encourage new applications that were formerly infeasible and, correspondingly, will result in new usage patterns. This thesis suggests that the fundamental improvement offered by wearable computing is an increased sense of user context. I hypothesize that on-body systems can sense the user's context with little or no assistance from environmental infrastructure. These body-centered systems that "see" as the user sees and "hear" as the user hears, provide a unique "first-person" viewpoint of the user's environment. By exploiting models recovered by these systems, interfaces are created which require minimal directed action or attention by the user. In addition, more traditional applications are augmented by the contextual information recovered by these systems. To investigate these issues, I provide perceptually sensible tools for recovering and modeling user context in a mobile, everyday environment. These tools include a downward-facing, camera-based system for establishing the location of the user; a tag-based object recognition system for augmented reality; and several on-body gesture recognition systems to identify various user tasks in constrained environments. To address the practicality of contextually-aware wearable computers, issues of power recovery, heat dissipation, and weight distribution are examined. In addition, I have encouraged a community of wearable computer users at the Media Lab through design, management, and support of hardware and software infrastructure. This unique community provides a heightened awareness of the use and social issues of wearable computing. As much as possible, the lessons from this experience will be conveyed in the thesis.by Thad Eugene Starner.Ph.D
    corecore