1,428 research outputs found

    Experience Implementing a Performant Category-Theory Library in Coq

    Get PDF
    We describe our experience implementing a broad category-theory library in Coq. Category theory and computational performance are not usually mentioned in the same breath, but we have needed substantial engineering effort to teach Coq to cope with large categorical constructions without slowing proof script processing unacceptably. In this paper, we share the lessons we have learned about how to represent very abstract mathematical objects and arguments in Coq and how future proof assistants might be designed to better support such reasoning. One particular encoding trick to which we draw attention allows category-theoretic arguments involving duality to be internalized in Coq's logic with definitional equality. Ours may be the largest Coq development to date that uses the relatively new Coq version developed by homotopy type theorists, and we reflect on which new features were especially helpful.Comment: The final publication will be available at link.springer.com. This version includes a full bibliography which does not fit in the Springer version; other than the more complete references, this is the version submitted as a final copy to ITP 201

    A tour of bordered Floer theory

    Full text link
    Heegaard Floer theory is a kind of topological quantum field theory, assigning graded groups to closed, connected, oriented 3-manifolds and group homomorphisms to smooth, oriented 4-dimensional cobordisms. Bordered Heegaard Floer homology is an extension of Heegaard Floer homology to 3-manifolds with boundary, with extended-TQFT-type gluing properties. In this survey, we explain the formal structure and construction of bordered Floer homology and sketch how it can be used to compute some aspects of Heegaard Floer theory.Comment: 13 pages, 7 figure

    Presenting Distributive Laws

    Get PDF
    Distributive laws of a monad T over a functor F are categorical tools for specifying algebra-coalgebra interaction. They proved to be important for solving systems of corecursive equations, for the specification of well-behaved structural operational semantics and, more recently, also for enhancements of the bisimulation proof method. If T is a free monad, then such distributive laws correspond to simple natural transformations. However, when T is not free it can be rather difficult to prove the defining axioms of a distributive law. In this paper we describe how to obtain a distributive law for a monad with an equational presentation from a distributive law for the underlying free monad. We apply this result to show the equivalence between two different representations of context-free languages
    • …
    corecore