146 research outputs found

    Improving the Quality of Citizen Contributed Geodata through Their Historical Contributions:The Case of the Road Network in OpenStreetMap

    Get PDF
    OpenStreetMap (OSM) has proven to serve as a promising free global encyclopedia of maps with an increasing popularity across different user communities and research bodies. One of the unique characteristics of OSM has been the availability of the full history of users’ contributions, which can leverage our quality control mechanisms through exploiting the history of contributions. Since this aspect of contributions (i.e., historical contributions) has been neglected in the literature, this study aims at presenting a novel approach for improving the positional accuracy and completeness of the OSM road network. To do so, we present a five-stage approach based on a Voronoi diagram that leads to improving the positional accuracy and completeness of the OSM road network. In the first stage, the OSM data history file is retrieved and in the second stage, the corresponding data elements for each object in the historical versions are identified. In the third stage, data cleaning on the historical datasets is carried out in order to identify outliers and remove them accordingly. In the fourth stage, through applying the Voronoi diagram method, one representative version for each set of historical versions is extracted. In the final stage, through examining the spatial relations for each object in the history file, the topology of the target object is enhanced. As per validation, a comparison between the latest version of the OSM data and the result of our approach against a reference dataset is carried out. Given a case study in Tehran, our findings reveal that the completeness and positional precision of OSM features can be improved up to 14%. Our conclusions draw attention to the exploitation of the historical archive of the contributions in OSM as an intrinsic quality indicator

    Automated Pattern Detection and Generalization of Building Groups

    Get PDF
    This dissertation focuses on the topic of building group generalization by considering the detection of building patterns. Generalization is an important research field in cartography, which is part of map production and the basis for the derivation of multiple representation. As one of the most important features on map, buildings occupy large amount of map space and normally have complex shape and spatial distribution, which leads to that the generalization of buildings has long been an important and challenging task. For social, architectural and geographical reasons, the buildings were built with some special rules which forms different building patterns. Building patterns are crucial structures which should be carefully considered during graphical representation and generalization. Although people can effortlessly perceive these patterns, however, building patterns are not explicitly described in building datasets. Therefore, to better support the subsequent generalization process, it is important to automatically recognize building patterns. The objective of this dissertation is to develop effective methods to detect building patterns from building groups. Based on the identified patterns, some generalization methods are proposed to fulfill the task of building generalization. The main contribution of the dissertation is described as the following five aspects: (1) The terminology and concept of building pattern has been clearly explained; a detailed and relative complete typology of building patterns has been proposed by summarizing the previous researches as well as extending by the author; (2) A stroke-mesh based method has been developed to group buildings and detect different patterns from the building groups; (3) Through the analogy between line simplification and linear building group typification, a stroke simplification based typification method has been developed aiming at solving the generalization of building groups with linear patterns; (4) A mesh-based typification method has been developed for the generalization of the building groups with grid patterns; (5) A method of extracting hierarchical skeleton structures from discrete buildings have been proposed. The extracted hierarchical skeleton structures are regarded as the representations of the global shape of the entire region, which is used to control the generalization process. With the above methods, the building patterns are detected from the building groups and the generalization of building groups are executed based on the patterns. In addition, the thesis has also discussed the drawbacks of the methods and gave the potential solutions.:Abstract I Kurzfassung III Contents V List of Figures IX List of Tables XIII List of Abbreviations XIV Chapter 1 Introduction 1 1.1 Background and motivation 1 1.1.1 Cartographic generalization 1 1.1.2 Urban building and building patterns 1 1.1.3 Building generalization 3 1.1.4 Hierarchical property in geographical objects 3 1.2 Research objectives 4 1.3 Study area 5 1.4 Thesis structure 6 Chapter 2 State of the Art 8 2.1 Operators for building generalization 8 2.1.1 Selection 9 2.1.2 Aggregation 9 2.1.3 Simplification 10 2.1.4 Displacement 10 2.2 Researches of building grouping and pattern detection 11 2.2.1 Building grouping 11 2.2.2 Pattern detection 12 2.2.3 Problem analysis . 14 2.3 Researches of building typification 14 2.3.1 Global typification 15 2.3.2 Local typification 15 2.3.3 Comparison analysis 16 2.3.4 Problem analysis 17 2.4 Summary 17 Chapter 3 Using stroke and mesh to recognize building group patterns 18 3.1 Abstract 19 3.2 Introduction 19 3.3 Literature review 20 3.4 Building pattern typology and study area 22 3.4.1 Building pattern typology 22 3.4.2 Study area 24 3.5 Methodology 25 3.5.1 Generating and refining proximity graph 25 3.5.2 Generating stroke and mesh 29 3.5.3 Building pattern recognition 31 3.6 Experiments 33 3.6.1 Data derivation and test framework 33 3.6.2 Pattern recognition results 35 3.6.3 Evaluation 39 3.7 Discussion 40 3.7.1 Adaptation of parameters 40 3.7.2 Ambiguity of building patterns 44 3.7.3 Advantage and Limitation 45 3.8 Conclusion 46 Chapter 4 A typification method for linear building groups based on stroke simplification 47 4.1 Abstract 48 4.2 Introduction 48 4.3 Detection of linear building groups 50 4.3.1 Stroke-based detection method 50 4.3.2 Distinguishing collinear and curvilinear patterns 53 4.4 Typification method 55 4.4.1 Analogy of building typification and line simplification 55 4.4.2 Stroke generation 56 4.4.3 Stroke simplification 57 4.5 Representation of newly typified buildings 60 4.6 Experiment 63 4.6.1 Linear building group detection 63 4.6.2 Typification results 65 4.7 Discussion 66 4.7.1 Comparison of reallocating remained nodes 66 4.7.2 Comparison with classic line simplification method 67 4.7.3 Advantage 69 4.7.4 Further improvement 71 4.8 Conclusion 71 Chapter 5 A mesh-based typification method for building groups with grid patterns 73 5.1 Abstract 74 5.2 Introduction 74 5.3 Related work 75 5.4 Methodology of mesh-based typification 78 5.4.1 Grid pattern classification 78 5.4.2 Mesh generation 79 5.4.3 Triangular mesh elimination 80 5.4.4 Number and positioning of typified buildings 82 5.4.5 Representation of typified buildings 83 5.4.6 Resizing Newly Typified Buildings 85 5.5 Experiments 86 5.5.1 Data derivation 86 5.5.2 Typification results and evaluation 87 5.5.3 Comparison with official map 91 5.6 Discussion 92 5.6.1 Advantages 92 5.6.2 Further improvements 93 5.7 Conclusion 94 Chapter 6 Hierarchical extraction of skeleton structures from discrete buildings 95 6.1 Abstract 96 6.2 Introduction 96 6.3 Related work 97 6.4 Study area 99 6.5 Hierarchical extraction of skeleton structures 100 6.5.1 Proximity Graph Network (PGN) of buildings 100 6.5.2 Centrality analysis of proximity graph network 103 6.5.3 Hierarchical skeleton structures of buildings 108 6.6 Generalization application 111 6.7 Experiment and discussion 114 6.7.1 Data statement 114 6.7.2 Experimental results 115 6.7.3 Discussion 118 6.8 Conclusions 120 Chapter 7 Discussion 121 7.1 Revisiting the research problems 121 7.2 Evaluation of the presented methodology 123 7.2.1 Strengths 123 7.2.2 Limitations 125 Chapter 8 Conclusions 127 8.1 Main contributions 127 8.2 Outlook 128 8.3 Final thoughts 131 Bibliography 132 Acknowledgements 142 Publications 14

    Rediscovered earth heritage becomes motor for local change. The Guérande Peninsula (France)

    Full text link
    [EN] In the northwest of France, raw earth has been broadly used, especially in Brittany where cob dwellings have been built since the sixteenth century. Today, cob buildings represent 20 % of the built heritage on this territory (Bardel P., Maillard J-L. 2009). The cob technique is also found in the Vendée marshes, where squat dwellings (“bourrines”), dating back to the fourteenth century, bear witness to the use of local, natural resources (Patte E., Streiff F. 2006; Bonnet S., Alzeort D, Poullain P. 2021). Between these two well-documented earth-building territories lies the Guérande Peninsula where earthen heritage, until recently little-known and neglected, has become the object of study.As a result of several inventories undertaken by earth-building professionals, a part of this heritage has been recorded and mapped (Hilton A. 2016; Miranda Santos M. 2016; Humblot D., Josset F., Marquis B. 2018). Two main research methods have been used: · a general audit of the specific areas of the peninsula where earth buildings exist,· a targeted audit of certain villages and their buildings.This latter entailed a comparison of historical maps with current cadastral maps, followed up by on-site verification.Following this inventory work, a sense of the nature and extent of local earthen heritage is beginning to emerge, feeding synergies with renewed local interest in earth construction. The Maison Neuve eco-district in Guérande presents a clear example of this: its objective is to reuse several thousand tonnes of its own site-excavated earth in earth-building projects over the next 5 years. The results of the inventory work helped this local project to understand the nature of the earth available and the different relevant earth-building techniques. The inventory work has also fed into local educational and awareness-raising activities to raise awareness of local earth-built heritage and disseminate best practice in the renovation of earthen walls.Miranda Santos, M.; Hilton, A.; Poullain, P.; Hamard, E.; Mouraud, C. (2022). Rediscovered earth heritage becomes motor for local change. The Guérande Peninsula (France). Editorial Universitat Politècnica de València. 149-156. https://doi.org/10.4995/HERITAGE2022.2022.1528714915

    Integrated spatial analysis of volunteered geographic information

    Get PDF
    Volunteered Geographic Information (VGI) is becoming a pervasive form of data within geographic academic research. VGI offers a relatively new form of data, one with both potential as a sensitive way to collect information about the world, and challenges associated with unknown and heterogeneous data quality. The lack of sampling control, variable expertise in data collection and handling, and limited control over data sources are significant research challenges. In this thesis, data quality of VGI is tackled as a general composite measure based on coverage of the dataset, the evenness in the density of data, and the relative evenness in contributors to a given dataset. A metric is formulated which measures these properties for VGI point pattern data. The utility of the metric for discriminating qualitatively different types of VGI is evaluated for different forms of VGI, based on a relative comparison framework. The metric is used to optimize both the spatial grains and spatial extents of several VGI study areas. General methods are created to support the assessment of data quality of VGI datasets at several spatial scales

    A survey on multi-robot coverage path planning for model reconstruction and mapping

    Get PDF
    There has been an increasing interest in researching, developing and deploying multi-robot systems. This has been driven mainly by: the maturity of the practical deployment of a single-robot system and its ability to solve some of the most challenging tasks. Coverage path planning (CPP) is one of the active research topics that could benefit greatly from multi-robot systems. In this paper, we surveyed the research topics related to multi-robot CPP for the purpose of mapping and model reconstructions. We classified the topics into: viewpoints generation approaches; coverage planning strategies; coordination and decision-making processes; communication mechanism and mapping approaches. This paper provides a detailed analysis and comparison of the recent research work in this area, and concludes with a critical analysis of the field, and future research perspectives

    Application of Geographic Information Systems

    Get PDF
    The importance of Geographic Information Systems (GIS) can hardly be overemphasized in today’s academic and professional arena. More professionals and academics have been using GIS than ever – urban & regional planners, civil engineers, geographers, spatial economists, sociologists, environmental scientists, criminal justice professionals, political scientists, and alike. As such, it is extremely important to understand the theories and applications of GIS in our teaching, professional work, and research. “The Application of Geographic Information Systems” presents research findings that explain GIS’s applications in different subfields of social sciences. With several case studies conducted in different parts of the world, the book blends together the theories of GIS and their practical implementations in different conditions. It deals with GIS’s application in the broad spectrum of geospatial analysis and modeling, water resources analysis, land use analysis, infrastructure network analysis like transportation and water distribution network, and such. The book is expected to be a useful source of knowledge to the users of GIS who envision its applications in their teaching and research. This easy-to-understand book is surely not the end in itself but a little contribution to toward our understanding of the rich and wonderful subject of GIS
    corecore