347 research outputs found

    Design of a Multi-biometric Platform, based on physical traits and physiological measures: Face, Iris, Ear, ECG and EEG

    Get PDF
    Security and safety is one the main concerns both for governments and for private companies in the last years so raising growing interests and investments in the area of biometric recognition and video surveillance, especially after the sad happenings of September 2001. Outlays assessments of the U.S. government for the years 2001-2005 estimate that the homeland security spending climbed from 56.0billionsofdollarsin2001toalmost56.0 billions of dollars in 2001 to almost 100 billion of 2005. In this lapse of time, new pattern recognition techniques have been developed and, even more important, new biometric traits have been investigated and refined; besides the well-known physical and behavioral characteristics, also physiological measures have been studied, so providing more features to enhance discrimination capabilities of individuals. This dissertation proposes the design of a multimodal biometric platform, FAIRY, based on the following biometric traits: ear, face, iris EEG and ECG signals. In the thesis the modular architecture of the platform has been presented, together with the results obtained for the solution to the recognition problems related to the different biometrics and their possible fusion. Finally, an analysis of the pattern recognition issues concerning the area of videosurveillance has been discussed

    Body swarm interface (BOSI) : controlling robotic swarms using human bio-signals

    Get PDF
    Traditionally robots are controlled using devices like joysticks, keyboards, mice and other similar human computer interface (HCI) devices. Although this approach is effective and practical for some cases, it is restrictive only to healthy individuals without disabilities, and it also requires the user to master the device before its usage. It becomes complicated and non-intuitive when multiple robots need to be controlled simultaneously with these traditional devices, as in the case of Human Swarm Interfaces (HSI). This work presents a novel concept of using human bio-signals to control swarms of robots. With this concept there are two major advantages: Firstly, it gives amputees and people with certain disabilities the ability to control robotic swarms, which has previously not been possible. Secondly, it also gives the user a more intuitive interface to control swarms of robots by using gestures, thoughts, and eye movement. We measure different bio-signals from the human body including Electroencephalography (EEG), Electromyography (EMG), Electrooculography (EOG), using off the shelf products. After minimal signal processing, we then decode the intended control action using machine learning techniques like Hidden Markov Models (HMM) and K-Nearest Neighbors (K-NN). We employ formation controllers based on distance and displacement to control the shape and motion of the robotic swarm. Comparison for ground truth for thoughts and gesture classifications are done, and the resulting pipelines are evaluated with both simulations and hardware experiments with swarms of ground robots and aerial vehicles
    corecore