265 research outputs found

    To boldly go:an occam-Ļ€ mission to engineer emergence

    Get PDF
    Future systems will be too complex to design and implement explicitly. Instead, we will have to learn to engineer complex behaviours indirectly: through the discovery and application of local rules of behaviour, applied to simple process components, from which desired behaviours predictably emerge through dynamic interactions between massive numbers of instances. This paper describes a process-oriented architecture for fine-grained concurrent systems that enables experiments with such indirect engineering. Examples are presented showing the differing complex behaviours that can arise from minor (non-linear) adjustments to low-level parameters, the difficulties in suppressing the emergence of unwanted (bad) behaviour, the unexpected relationships between apparently unrelated physical phenomena (shown up by their separate emergence from the same primordial process swamp) and the ability to explore and engineer completely new physics (such as force fields) by their emergence from low-level process interactions whose mechanisms can only be imagined, but not built, at the current time

    Fourteenth Biennial Status Report: MƤrz 2017 - February 2019

    No full text

    Energy Measurements of High Performance Computing Systems: From Instrumentation to Analysis

    Get PDF
    Energy efficiency is a major criterion for computing in general and High Performance Computing in particular. When optimizing for energy efficiency, it is essential to measure the underlying metric: energy consumption. To fully leverage energy measurements, their quality needs to be well-understood. To that end, this thesis provides a rigorous evaluation of various energy measurement techniques. I demonstrate how the deliberate selection of instrumentation points, sensors, and analog processing schemes can enhance the temporal and spatial resolution while preserving a well-known accuracy. Further, I evaluate a scalable energy measurement solution for production HPC systems and address its shortcomings. Such high-resolution and large-scale measurements present challenges regarding the management of large volumes of generated metric data. I address these challenges with a scalable infrastructure for collecting, storing, and analyzing metric data. With this infrastructure, I also introduce a novel persistent storage scheme for metric time series data, which allows efficient queries for aggregate timelines. To ensure that it satisfies the demanding requirements for scalable power measurements, I conduct an extensive performance evaluation and describe a productive deployment of the infrastructure. Finally, I describe different approaches and practical examples of analyses based on energy measurement data. In particular, I focus on the combination of energy measurements and application performance traces. However, interweaving fine-grained power recordings and application events requires accurately synchronized timestamps on both sides. To overcome this obstacle, I develop a resilient and automated technique for time synchronization, which utilizes crosscorrelation of a specifically influenced power measurement signal. Ultimately, this careful combination of sophisticated energy measurements and application performance traces yields a detailed insight into application and system energy efficiency at full-scale HPC systems and down to millisecond-range regions.:1 Introduction 2 Background and Related Work 2.1 Basic Concepts of Energy Measurements 2.1.1 Basics of Metrology 2.1.2 Measuring Voltage, Current, and Power 2.1.3 Measurement Signal Conditioning and Analog-to-Digital Conversion 2.2 Power Measurements for Computing Systems 2.2.1 Measuring Compute Nodes using External Power Meters 2.2.2 Custom Solutions for Measuring Compute Node Power 2.2.3 Measurement Solutions of System Integrators 2.2.4 CPU Energy Counters 2.2.5 Using Models to Determine Energy Consumption 2.3 Processing of Power Measurement Data 2.3.1 Time Series Databases 2.3.2 Data Center Monitoring Systems 2.4 Influences on the Energy Consumption of Computing Systems 2.4.1 Processor Power Consumption Breakdown 2.4.2 Energy-Efficient Hardware Configuration 2.5 HPC Performance and Energy Analysis 2.5.1 Performance Analysis Techniques 2.5.2 HPC Performance Analysis Tools 2.5.3 Combining Application and Power Measurements 2.6 Conclusion 3 Evaluating and Improving Energy Measurements 3.1 Description of the Systems Under Test 3.2 Instrumentation Points and Measurement Sensors 3.2.1 Analog Measurement at Voltage Regulators 3.2.2 Instrumentation with Hall Effect Transducers 3.2.3 Modular Instrumentation of DC Consumers 3.2.4 Optimal Wiring for Shunt-Based Measurements 3.2.5 Node-Level Instrumentation for HPC Systems 3.3 Analog Signal Conditioning and Analog-to-Digital Conversion 3.3.1 Signal Amplification 3.3.2 Analog Filtering and Analog-To-Digital Conversion 3.3.3 Integrated Solutions for High-Resolution Measurement 3.4 Accuracy Evaluation and Calibration 3.4.1 Synthetic Workloads for Evaluating Power Measurements 3.4.2 Improving and Evaluating the Accuracy of a Single-Node Measuring System 3.4.3 Absolute Accuracy Evaluation of a Many-Node Measuring System 3.5 Evaluating Temporal Granularity and Energy Correctness 3.5.1 Measurement Signal Bandwidth at Different Instrumentation Points 3.5.2 Retaining Energy Correctness During Digital Processing 3.6 Evaluating CPU Energy Counters 3.6.1 Energy Readouts with RAPL 3.6.2 Methodology 3.6.3 RAPL on Intel Sandy Bridge-EP 3.6.4 RAPL on Intel Haswell-EP and Skylake-SP 3.7 Conclusion 4 A Scalable Infrastructure for Processing Power Measurement Data 4.1 Requirements for Power Measurement Data Processing 4.2 Concepts and Implementation of Measurement Data Management 4.2.1 Message-Based Communication between Agents 4.2.2 Protocols 4.2.3 Application Programming Interfaces 4.2.4 Efficient Metric Time Series Storage and Retrieval 4.2.5 Hierarchical Timeline Aggregation 4.3 Performance Evaluation 4.3.1 Benchmark Hardware Specifications 4.3.2 Throughput in Symmetric Configuration with Replication 4.3.3 Throughput with Many Data Sources and Single Consumers 4.3.4 Temporary Storage in Message Queues 4.3.5 Persistent Metric Time Series Request Performance 4.3.6 Performance Comparison with Contemporary Time Series Storage Solutions 4.3.7 Practical Usage of MetricQ 4.4 Conclusion 5 Energy Efficiency Analysis 5.1 General Energy Efficiency Analysis Scenarios 5.1.1 Live Visualization of Power Measurements 5.1.2 Visualization of Long-Term Measurements 5.1.3 Integration in Application Performance Traces 5.1.4 Graphical Analysis of Application Power Traces 5.2 Correlating Power Measurements with Application Events 5.2.1 Challenges for Time Synchronization of Power Measurements 5.2.2 Reliable Automatic Time Synchronization with Correlation Sequences 5.2.3 Creating a Correlation Signal on a Power Measurement Channel 5.2.4 Processing the Correlation Signal and Measured Power Values 5.2.5 Common Oversampling of the Correlation Signals at Different Rates 5.2.6 Evaluation of Correlation and Time Synchronization 5.3 Use Cases for Application Power Traces 5.3.1 Analyzing Complex Power Anomalies 5.3.2 Quantifying C-State Transitions 5.3.3 Measuring the Dynamic Power Consumption of HPC Applications 5.4 Conclusion 6 Summary and Outloo

    Recent Advances in Embedded Computing, Intelligence and Applications

    Get PDF
    The latest proliferation of Internet of Things deployments and edge computing combined with artificial intelligence has led to new exciting application scenarios, where embedded digital devices are essential enablers. Moreover, new powerful and efficient devices are appearing to cope with workloads formerly reserved for the cloud, such as deep learning. These devices allow processing close to where data are generated, avoiding bottlenecks due to communication limitations. The efficient integration of hardware, software and artificial intelligence capabilities deployed in real sensing contexts empowers the edge intelligence paradigm, which will ultimately contribute to the fostering of the offloading processing functionalities to the edge. In this Special Issue, researchers have contributed nine peer-reviewed papers covering a wide range of topics in the area of edge intelligence. Among them are hardware-accelerated implementations of deep neural networks, IoT platforms for extreme edge computing, neuro-evolvable and neuromorphic machine learning, and embedded recommender systems

    OpenCog Hyperon: A Framework for AGI at the Human Level and Beyond

    Full text link
    An introduction to the OpenCog Hyperon framework for Artificiai General Intelligence is presented. Hyperon is a new, mostly from-the-ground-up rewrite/redesign of the OpenCog AGI framework, based on similar conceptual and cognitive principles to the previous OpenCog version, but incorporating a variety of new ideas at the mathematical, software architecture and AI-algorithm level. This review lightly summarizes: 1) some of the history behind OpenCog and Hyperon, 2) the core structures and processes underlying Hyperon as a software system, 3) the integration of this software system with the SingularityNET ecosystem's decentralized infrastructure, 4) the cognitive model(s) being experimentally pursued within Hyperon on the hopeful path to advanced AGI, 5) the prospects seen for advanced aspects like reflective self-modification and self-improvement of the codebase, 6) the tentative development roadmap and various challenges expected to be faced, 7) the thinking of the Hyperon team regarding how to guide this sort of work in a beneficial direction ... and gives links and references for readers who wish to delve further into any of these aspects

    Advances in Reinforcement Learning

    Get PDF
    Reinforcement Learning (RL) is a very dynamic area in terms of theory and application. This book brings together many different aspects of the current research on several fields associated to RL which has been growing rapidly, producing a wide variety of learning algorithms for different applications. Based on 24 Chapters, it covers a very broad variety of topics in RL and their application in autonomous systems. A set of chapters in this book provide a general overview of RL while other chapters focus mostly on the applications of RL paradigms: Game Theory, Multi-Agent Theory, Robotic, Networking Technologies, Vehicular Navigation, Medicine and Industrial Logistic
    • ā€¦
    corecore