5,259 research outputs found

    A framework for epidemic spreading in multiplex networks of metapopulations

    Get PDF
    We propose a theoretical framework for the study of epidemics in structured metapopulations, with heterogeneous agents, subjected to recurrent mobility patterns. We propose to represent the heterogeneity in the composition of the metapopulations as layers in a multiplex network, where nodes would correspond to geographical areas and layers account for the mobility patterns of agents of the same class. We analyze both the classical Susceptible-Infected-Susceptible and the Susceptible-Infected-Removed epidemic models within this framework, and compare macroscopic and microscopic indicators of the spreading process with extensive Monte Carlo simulations. Our results are in excellent agreement with the simulations. We also derive an exact expression of the epidemic threshold on this general framework revealing a non-trivial dependence on the mobility parameter. Finally, we use this new formalism to address the spread of diseases in real cities, specifically in the city of Medellin, Colombia, whose population is divided into six socio-economic classes, each one identified with a layer in this multiplex formalism.Comment: 13 pages, 11 figure

    Consensus reaching in swarms ruled by a hybrid metric-topological distance

    Full text link
    Recent empirical observations of three-dimensional bird flocks and human crowds have challenged the long-prevailing assumption that a metric interaction distance rules swarming behaviors. In some cases, individual agents are found to be engaged in local information exchanges with a fixed number of neighbors, i.e. a topological interaction. However, complex system dynamics based on pure metric or pure topological distances both face physical inconsistencies in low and high density situations. Here, we propose a hybrid metric-topological interaction distance overcoming these issues and enabling a real-life implementation in artificial robotic swarms. We use network- and graph-theoretic approaches combined with a dynamical model of locally interacting self-propelled particles to study the consensus reaching pro- cess for a swarm ruled by this hybrid interaction distance. Specifically, we establish exactly the probability of reaching consensus in the absence of noise. In addition, simulations of swarms of self-propelled particles are carried out to assess the influence of the hybrid distance and noise

    Pinning dynamic systems of networks with Markovian switching couplings and controller-node set

    Full text link
    In this paper, we study pinning control problem of coupled dynamical systems with stochastically switching couplings and stochastically selected controller-node set. Here, the coupling matrices and the controller-node sets change with time, induced by a continuous-time Markovian chain. By constructing Lyapunov functions, we establish tractable sufficient conditions for exponentially stability of the coupled system. Two scenarios are considered here. First, we prove that if each subsystem in the switching system, i.e. with the fixed coupling, can be stabilized by the fixed pinning controller-node set, and in addition, the Markovian switching is sufficiently slow, then the time-varying dynamical system is stabilized. Second, in particular, for the problem of spatial pinning control of network with mobile agents, we conclude that if the system with the average coupling and pinning gains can be stabilized and the switching is sufficiently fast, the time-varying system is stabilized. Two numerical examples are provided to demonstrate the validity of these theoretical results, including a switching dynamical system between several stable sub-systems, and a dynamical system with mobile nodes and spatial pinning control towards the nodes when these nodes are being in a pre-designed region.Comment: 9 pages; 3 figure

    Traffic Offloading/Onloading in Multi-RAT Cellular Networks

    Get PDF
    We analyze next generation cellular networks, offering connectivity to mobile users through multiple radio access technologies (RATs), namely LTE and WiFi. We develop a framework based on the Markovian agent formalism, which can model several aspects of the system, including user traffic dynamics and radio resource allocation. In particular, through a mean-field solution, we show the ability of our framework to capture the system behavior in flash-crowd scenarios, i.e., when a burst of traffic requests takes place in some parts of the network service area. We consider a distributed strategy for the user RAT selection, which aims at ensuring high user throughput, and investigate its performance under different resource allocation scheme

    Opinion influence and evolution in social networks: a Markovian agents model

    Full text link
    In this paper, the effect on collective opinions of filtering algorithms managed by social network platforms is modeled and investigated. A stochastic multi-agent model for opinion dynamics is proposed, that accounts for a centralized tuning of the strength of interaction between individuals. The evolution of each individual opinion is described by a Markov chain, whose transition rates are affected by the opinions of the neighbors through influence parameters. The properties of this model are studied in a general setting as well as in interesting special cases. A general result is that the overall model of the social network behaves like a high-dimensional Markov chain, which is viable to Monte Carlo simulation. Under the assumption of identical agents and unbiased influence, it is shown that the influence intensity affects the variance, but not the expectation, of the number of individuals sharing a certain opinion. Moreover, a detailed analysis is carried out for the so-called Peer Assembly, which describes the evolution of binary opinions in a completely connected graph of identical agents. It is shown that the Peer Assembly can be lumped into a birth-death chain that can be given a complete analytical characterization. Both analytical results and simulation experiments are used to highlight the emergence of particular collective behaviours, e.g. consensus and herding, depending on the centralized tuning of the influence parameters.Comment: Revised version (May 2018
    corecore