1,061 research outputs found

    Reward Shaping for Building Trustworthy Robots in Sequential Human-Robot Interaction

    Full text link
    Trust-aware human-robot interaction (HRI) has received increasing research attention, as trust has been shown to be a crucial factor for effective HRI. Research in trust-aware HRI discovered a dilemma -- maximizing task rewards often leads to decreased human trust, while maximizing human trust would compromise task performance. In this work, we address this dilemma by formulating the HRI process as a two-player Markov game and utilizing the reward-shaping technique to improve human trust while limiting performance loss. Specifically, we show that when the shaping reward is potential-based, the performance loss can be bounded by the potential functions evaluated at the final states of the Markov game. We apply the proposed framework to the experience-based trust model, resulting in a linear program that can be efficiently solved and deployed in real-world applications. We evaluate the proposed framework in a simulation scenario where a human-robot team performs a search-and-rescue mission. The results demonstrate that the proposed framework successfully modifies the robot's optimal policy, enabling it to increase human trust at a minimal task performance cost.Comment: In Proceedings of 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

    Generation of Policy-Level Explanations for Reinforcement Learning

    Full text link
    Though reinforcement learning has greatly benefited from the incorporation of neural networks, the inability to verify the correctness of such systems limits their use. Current work in explainable deep learning focuses on explaining only a single decision in terms of input features, making it unsuitable for explaining a sequence of decisions. To address this need, we introduce Abstracted Policy Graphs, which are Markov chains of abstract states. This representation concisely summarizes a policy so that individual decisions can be explained in the context of expected future transitions. Additionally, we propose a method to generate these Abstracted Policy Graphs for deterministic policies given a learned value function and a set of observed transitions, potentially off-policy transitions used during training. Since no restrictions are placed on how the value function is generated, our method is compatible with many existing reinforcement learning methods. We prove that the worst-case time complexity of our method is quadratic in the number of features and linear in the number of provided transitions, O(∣F∣2∣tr_samples∣)O(|F|^2 |tr\_samples|). By applying our method to a family of domains, we show that our method scales well in practice and produces Abstracted Policy Graphs which reliably capture relationships within these domains.Comment: Accepted to Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (2019

    Decision Modeling in Markovian Multi-Agent Systems

    Get PDF
    In this paper, we model a decision-making process involving a set of interacting agents. We use Markovian opinion dynamics, where each agent switches between decisions according to a continuous time Markov chain. Existing opinion dynamics models are extended by introducing attractive and repulsive forces that act within and between groups of agents, respectively. Such an extension enables the resemblance of behaviours emerging in networks where agents make decisions that depend both on their own preferences and the decisions of specific groups of surrounding agents. The considered modeling problem and the contributions in this paper are inspired by the interaction among road users (RUs) at traffic junctions, where each RU has to decide whether to go or to yield

    Decision Modeling in Markovian Multi-Agent Systems

    Get PDF
    In this paper, we model a decision-making process involving a set of interacting agents. We use Markovian opinion dynamics, where each agent switches between decisions according to a continuous time Markov chain. Existing opinion dynamics models are extended by introducing attractive and repulsive forces that act within and between groups of agents, respectively. Such an extension enables the resemblance of behaviours emerging in networks where agents make decisions that depend both on their own preferences and the decisions of specific groups of surrounding agents. The considered modeling problem and the contributions in this paper are inspired by the interaction among road users (RUs) at traffic junctions, where each RU has to decide whether to go or to yield

    Collective Decision Making using Attractive and Repulsive Forces in Markovian Opinion Dynamics

    Get PDF
    In this paper, we model a decision-making process involving a set of interacting agents. We use Markovian opinion dynamics, where each agent switches between decisions according to a continuous time Markov chain. Existing opinion dynamics models are extended by introducing attractive and repulsive forces that act within and between groups of agents, respectively. Such an extension enables the resemblance of behaviours emerging in networks where agents make decisions that depend both on their own preferences and the decisions of specific groups of surrounding agents. The considered modeling problem and the contributions in this paper are inspired by the interaction among road users (RUs) at traffic junctions, where each RU has to decide whether to go or to yield

    Neural combinatorial optimization as an enabler technology to design real-time virtual network function placement decision systems

    Get PDF
    158 p.The Fifth Generation of the mobile network (5G) represents a breakthrough technology for thetelecommunications industry. 5G provides a unified infrastructure capable of integrating over thesame physical network heterogeneous services with different requirements. This is achieved thanksto the recent advances in network virtualization, specifically in Network Function Virtualization(NFV) and Software Defining Networks (SDN) technologies. This cloud-based architecture not onlybrings new possibilities to vertical sectors but also entails new challenges that have to be solvedaccordingly. In this sense, it enables to automate operations within the infrastructure, allowing toperform network optimization at operational time (e.g., spectrum optimization, service optimization,traffic optimization). Nevertheless, designing optimization algorithms for this purpose entails somedifficulties. Solving the underlying Combinatorial Optimization (CO) problems that these problemspresent is usually intractable due to their NP-Hard nature. In addition, solutions to these problems arerequired in close to real-time due to the tight time requirements on this dynamic environment. Forthis reason, handwritten heuristic algorithms have been widely used in the literature for achievingfast approximate solutions on this context.However, particularizing heuristics to address CO problems can be a daunting task that requiresexpertise. The ability to automate this resolution processes would be of utmost importance forachieving an intelligent network orchestration. In this sense, Artificial Intelligence (AI) is envisionedas the key technology for autonomously inferring intelligent solutions to these problems. Combining AI with network virtualization can truly transform this industry. Particularly, this Thesis aims at using Neural Combinatorial Optimization (NCO) for inferring endsolutions on CO problems. NCO has proven to be able to learn near optimal solutions on classicalcombinatorial problems (e.g., the Traveler Salesman Problem (TSP), Bin Packing Problem (BPP),Vehicle Routing Problem (VRP)). Specifically, NCO relies on Reinforcement Learning (RL) toestimate a Neural Network (NN) model that describes the relation between the space of instances ofthe problem and the solutions for each of them. In other words, this model for a new instance is ableto infer a solution generalizing from the problem space where it has been trained. To this end, duringthe learning process the model takes instances from the learning space, and uses the reward obtainedfrom evaluating the solution to improve its accuracy.The work here presented, contributes to the NCO theory in two main directions. First, this workargues that the performance obtained by sequence-to-sequence models used for NCO in the literatureis improved presenting combinatorial problems as Constrained Markov Decision Processes (CMDP).Such property can be exploited for building a Markovian model that constructs solutionsincrementally based on interactions with the problem. And second, this formulation enables toaddress general constrained combinatorial problems under this framework. In this context, the modelin addition to the reward signal, relies on penalty signals generated from constraint dissatisfactionthat direct the model toward a competitive policy even in highly constrained environments. Thisstrategy allows to extend the number of problems that can be addressed using this technology.The presented approach is validated in the scope of intelligent network management, specifically inthe Virtual Network Function (VNF) placement problem. This problem consists of efficientlymapping a set of network service requests on top of the physical network infrastructure. Particularly,we seek to obtain the optimal placement for a network service chain considering the state of thevirtual environment, so that a specific resource objective is accomplished, in this case theminimization of the overall power consumption. Conducted experiments prove the capability of theproposal for learning competitive solutions when compared to classical heuristic, metaheuristic, andConstraint Programming (CP) solvers

    PocketCare: Tracking the Flu with Mobile Phones using Partial Observations of Proximity and Symptoms

    Full text link
    Mobile phones provide a powerful sensing platform that researchers may adopt to understand proximity interactions among people and the diffusion, through these interactions, of diseases, behaviors, and opinions. However, it remains a challenge to track the proximity-based interactions of a whole community and then model the social diffusion of diseases and behaviors starting from the observations of a small fraction of the volunteer population. In this paper, we propose a novel approach that tries to connect together these sparse observations using a model of how individuals interact with each other and how social interactions happen in terms of a sequence of proximity interactions. We apply our approach to track the spreading of flu in the spatial-proximity network of a 3000-people university campus by mobilizing 300 volunteers from this population to monitor nearby mobile phones through Bluetooth scanning and to daily report flu symptoms about and around them. Our aim is to predict the likelihood for an individual to get flu based on how often her/his daily routine intersects with those of the volunteers. Thus, we use the daily routines of the volunteers to build a model of the volunteers as well as of the non-volunteers. Our results show that we can predict flu infection two weeks ahead of time with an average precision from 0.24 to 0.35 depending on the amount of information. This precision is six to nine times higher than with a random guess model. At the population level, we can predict infectious population in a two-week window with an r-squared value of 0.95 (a random-guess model obtains an r-squared value of 0.2). These results point to an innovative approach for tracking individuals who have interacted with people showing symptoms, allowing us to warn those in danger of infection and to inform health researchers about the progression of contact-induced diseases
    • …
    corecore