26,320 research outputs found

    Deep Markov Random Field for Image Modeling

    Full text link
    Markov Random Fields (MRFs), a formulation widely used in generative image modeling, have long been plagued by the lack of expressive power. This issue is primarily due to the fact that conventional MRFs formulations tend to use simplistic factors to capture local patterns. In this paper, we move beyond such limitations, and propose a novel MRF model that uses fully-connected neurons to express the complex interactions among pixels. Through theoretical analysis, we reveal an inherent connection between this model and recurrent neural networks, and thereon derive an approximated feed-forward network that couples multiple RNNs along opposite directions. This formulation combines the expressive power of deep neural networks and the cyclic dependency structure of MRF in a unified model, bringing the modeling capability to a new level. The feed-forward approximation also allows it to be efficiently learned from data. Experimental results on a variety of low-level vision tasks show notable improvement over state-of-the-arts.Comment: Accepted at ECCV 201

    Markov Network Structure Learning via Ensemble-of-Forests Models

    Full text link
    Real world systems typically feature a variety of different dependency types and topologies that complicate model selection for probabilistic graphical models. We introduce the ensemble-of-forests model, a generalization of the ensemble-of-trees model. Our model enables structure learning of Markov random fields (MRF) with multiple connected components and arbitrary potentials. We present two approximate inference techniques for this model and demonstrate their performance on synthetic data. Our results suggest that the ensemble-of-forests approach can accurately recover sparse, possibly disconnected MRF topologies, even in presence of non-Gaussian dependencies and/or low sample size. We applied the ensemble-of-forests model to learn the structure of perturbed signaling networks of immune cells and found that these frequently exhibit non-Gaussian dependencies with disconnected MRF topologies. In summary, we expect that the ensemble-of-forests model will enable MRF structure learning in other high dimensional real world settings that are governed by non-trivial dependencies.Comment: 13 pages, 6 figure

    Language Models

    Get PDF
    Contains fulltext : 227630.pdf (preprint version ) (Open Access

    A mixed effects model for longitudinal relational and network data, with applications to international trade and conflict

    Full text link
    The focus of this paper is an approach to the modeling of longitudinal social network or relational data. Such data arise from measurements on pairs of objects or actors made at regular temporal intervals, resulting in a social network for each point in time. In this article we represent the network and temporal dependencies with a random effects model, resulting in a stochastic process defined by a set of stationary covariance matrices. Our approach builds upon the social relations models of Warner, Kenny and Stoto [Journal of Personality and Social Psychology 37 (1979) 1742--1757] and Gill and Swartz [Canad. J. Statist. 29 (2001) 321--331] and allows for an intra- and inter-temporal representation of network structures. We apply the methodology to two longitudinal data sets: international trade (continuous response) and militarized interstate disputes (binary response).Comment: Published in at http://dx.doi.org/10.1214/10-AOAS403 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore