204 research outputs found

    Multiple Timescale Dispatch and Scheduling for Stochastic Reliability in Smart Grids with Wind Generation Integration

    Full text link
    Integrating volatile renewable energy resources into the bulk power grid is challenging, due to the reliability requirement that at each instant the load and generation in the system remain balanced. In this study, we tackle this challenge for smart grid with integrated wind generation, by leveraging multi-timescale dispatch and scheduling. Specifically, we consider smart grids with two classes of energy users - traditional energy users and opportunistic energy users (e.g., smart meters or smart appliances), and investigate pricing and dispatch at two timescales, via day-ahead scheduling and realtime scheduling. In day-ahead scheduling, with the statistical information on wind generation and energy demands, we characterize the optimal procurement of the energy supply and the day-ahead retail price for the traditional energy users; in realtime scheduling, with the realization of wind generation and the load of traditional energy users, we optimize real-time prices to manage the opportunistic energy users so as to achieve systemwide reliability. More specifically, when the opportunistic users are non-persistent, i.e., a subset of them leave the power market when the real-time price is not acceptable, we obtain closedform solutions to the two-level scheduling problem. For the persistent case, we treat the scheduling problem as a multitimescale Markov decision process. We show that it can be recast, explicitly, as a classic Markov decision process with continuous state and action spaces, the solution to which can be found via standard techniques. We conclude that the proposed multi-scale dispatch and scheduling with real-time pricing can effectively address the volatility and uncertainty of wind generation and energy demand, and has the potential to improve the penetration of renewable energy into smart grids.Comment: Submitted to IEEE Infocom 2011. Contains 10 pages and 4 figures. Replaces the previous arXiv submission (dated Aug-23-2010) with the same titl

    A Data Analytics Framework for Smart Grids: Spatio-temporal Wind Power Analysis and Synchrophasor Data Mining

    Get PDF
    abstract: Under the framework of intelligent management of power grids by leveraging advanced information, communication and control technologies, a primary objective of this study is to develop novel data mining and data processing schemes for several critical applications that can enhance the reliability of power systems. Specifically, this study is broadly organized into the following two parts: I) spatio-temporal wind power analysis for wind generation forecast and integration, and II) data mining and information fusion of synchrophasor measurements toward secure power grids. Part I is centered around wind power generation forecast and integration. First, a spatio-temporal analysis approach for short-term wind farm generation forecasting is proposed. Specifically, using extensive measurement data from an actual wind farm, the probability distribution and the level crossing rate of wind farm generation are characterized using tools from graphical learning and time-series analysis. Built on these spatial and temporal characterizations, finite state Markov chain models are developed, and a point forecast of wind farm generation is derived using the Markov chains. Then, multi-timescale scheduling and dispatch with stochastic wind generation and opportunistic demand response is investigated. Part II focuses on incorporating the emerging synchrophasor technology into the security assessment and the post-disturbance fault diagnosis of power systems. First, a data-mining framework is developed for on-line dynamic security assessment by using adaptive ensemble decision tree learning of real-time synchrophasor measurements. Under this framework, novel on-line dynamic security assessment schemes are devised, aiming to handle various factors (including variations of operating conditions, forced system topology change, and loss of critical synchrophasor measurements) that can have significant impact on the performance of conventional data-mining based on-line DSA schemes. Then, in the context of post-disturbance analysis, fault detection and localization of line outage is investigated using a dependency graph approach. It is shown that a dependency graph for voltage phase angles can be built according to the interconnection structure of power system, and line outage events can be detected and localized through networked data fusion of the synchrophasor measurements collected from multiple locations of power grids. Along a more practical avenue, a decentralized networked data fusion scheme is proposed for efficient fault detection and localization.Dissertation/ThesisPh.D. Electrical Engineering 201

    Reinforcement Learning and Its Applications in Modern Power and Energy Systems:A Review

    Get PDF

    Deep Reinforcement Learning for Distribution Network Operation and Electricity Market

    Full text link
    The conventional distribution network and electricity market operation have become challenging under complicated network operating conditions, due to emerging distributed electricity generations, coupled energy networks, and new market behaviours. These challenges include increasing dynamics and stochastics, and vast problem dimensions such as control points, measurements, and multiple objectives, etc. Previously the optimization models were often formulated as conventional programming problems and then solved mathematically, which could now become highly time-consuming or sometimes infeasible. On the other hand, with the recent advancement of artificial intelligence technologies, deep reinforcement learning (DRL) algorithms have demonstrated their excellent performances in various control and optimization fields. This indicates a potential alternative to address these challenges. In this thesis, DRL-based solutions for distribution network operation and electricity market have been investigated and proposed. Firstly, a DRL-based methodology is proposed for Volt/Var Control (VVC) optimization in a large distribution network, to effectively control bus voltages and reduce network power losses. Further, this thesis proposes a multi-agent (MA)DRL-based methodology under a complex regional coordinated VVC framework, and it can address spatial and temporal uncertainties. The DRL algorithm is also improved to adapt to the applications. Then, an integrated energy and heating systems (IEHS) optimization problem is solved by a MADRL-based methodology, where conventionally this could only be solved by simplifications or iterations. Beyond the applications in distribution network operation, a new electricity market service pricing method based on a DRL algorithm is also proposed. This DRL-based method has demonstrated good performance in this virtual storage rental service pricing problem, whereas this bi-level problem could hardly be solved directly due to a non-convex and non-continuous lower-level problem. These proposed methods have demonstrated advantageous performances under comprehensive case studies, and numerical simulation results have validated the effectiveness and high efficiency under different sophisticated operation conditions, solution robustness against temporal and spatial uncertainties, and optimality under large problem dimensions

    Demand response performance and uncertainty: A systematic literature review

    Get PDF
    The present review has been carried out, resorting to the PRISMA methodology, analyzing 218 published articles. A comprehensive analysis has been conducted regarding the consumer's role in the energy market. Moreover, the methods used to address demand response uncertainty and the strategies used to enhance performance and motivate participation have been reviewed. The authors find that participants will be willing to change their consumption pattern and behavior given that they have a complete awareness of the market environment, seeking the optimal decision. The authors also find that a contextual solution, giving the right signals according to the different behaviors and to the different types of participants in the DR event, can improve the performance of consumers' participation, providing a reliable response. DR is a mean of demand-side management, so both these concepts are addressed in the present paper. Finally, the pathways for future research are discussed.This article is a result of the project RETINA (NORTE-01-0145- FEDER-000062), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). We also acknowledge the work facilities and equipment provided by GECAD research center (UIDB/00760/2020) to the project team, and grants CEECIND/02887/2017 and SFRH/BD/144200/2019.info:eu-repo/semantics/publishedVersio

    MultiGreen: Cost-Minimizing Multi-source Datacenter Power Supply with Online Control

    Get PDF
    Session 4: Data Center Energy ManagementFulltext of the conference paper in: http://conferences.sigcomm.org/eenergy/2013/papers/p13.pdfFaced by soaring power cost, large footprint of carbon emis- sion and unpredictable power outage, more and more mod- ern Cloud Service Providers (CSPs) begin to mitigate these challenges by equipping their Datacenter Power Supply Sys- tem (DPSS) with multiple sources: (1) smart grid with time- varying electricity prices, (2) uninterrupted power supply (UPS) of finite capacity, and (3) intermittent green or re- newable energy. It remains a significant challenge how to operate among multiple power supply sources in a comple- mentary manner, to deliver reliable energy to datacenter users over time, while minimizing a CSP’s operational cost over the long run. This paper proposes an efficient, online control algorithm for DPSS, called MultiGreen. MultiGreen is based on an innovative two-timescale Lyapunov optimiza- tion technique. Without requiring a priori knowledge of system statistics, MultiGreen allows CSPs to make online decisions on purchasing grid energy at two time scales (in the long-term market and in the real-time market), leveraging renewable energy, and opportunistically charging and dis- charging UPS, in order to fully leverage the available green energy and low electricity prices at times for minimum op- erational cost. Our detailed analysis and trace-driven sim- ulations based on one-month real-world data have demon- strated the optimality (in terms of the tradeoff between min- imization of DPSS operational cost and satisfaction of data- center availability) and stability (performance guarantee in cases of fluctuating energy demand and supply) of Multi- Green

    Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities

    Full text link
    Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.Comment: To be published in IEEE Communications Surveys and Tutorial
    • …
    corecore