4,097 research outputs found

    An SMDP-based Resource Management Scheme for Distributed Cloud Systems

    Full text link
    In this paper, the resource management problem in geographically distributed cloud systems is considered. The Follow Me Cloud concept which enables service migration across federated data centers (DCs) is adopted. Therefore, there are two types of service requests to the DC, i.e., new requests (NRs) initiated in the local service area and migration requests (MRs) generated when mobile users move across service areas. A novel resource management scheme is proposed to help the resource manager decide whether to accept the service requests (NRs or MRs) or not and determine how much resources should be allocated to each service (if accepted). The optimization objective is to maximize the average system reward and keep the rejection probability of service requests under a certain threshold. Numerical results indicate that the proposed scheme can significantly improve the overall system utility as well as the user experience compared with other resource management schemes.Comment: 5 pages, 5 figures, conferenc

    Mobility-Induced Service Migration in Mobile Micro-Clouds

    Full text link
    Mobile micro-cloud is an emerging technology in distributed computing, which is aimed at providing seamless computing/data access to the edge of the network when a centralized service may suffer from poor connectivity and long latency. Different from the traditional cloud, a mobile micro-cloud is smaller and deployed closer to users, typically attached to a cellular basestation or wireless network access point. Due to the relatively small coverage area of each basestation or access point, when a user moves across areas covered by different basestations or access points which are attached to different micro-clouds, issues of service performance and service migration become important. In this paper, we consider such migration issues. We model the general problem as a Markov decision process (MDP), and show that, in the special case where the mobile user follows a one-dimensional asymmetric random walk mobility model, the optimal policy for service migration is a threshold policy. We obtain the analytical solution for the cost resulting from arbitrary thresholds, and then propose an algorithm for finding the optimal thresholds. The proposed algorithm is more efficient than standard mechanisms for solving MDPs.Comment: in Proc. of IEEE MILCOM 2014, Oct. 201

    A survey on mobility-induced service migration in the fog, edge, and related computing paradigms

    Get PDF
    The final publication is available at ACM via http://dx.doi.org/10.1145/3326540With the advent of fog and edge computing paradigms, computation capabilities have been moved toward the edge of the network to support the requirements of highly demanding services. To ensure that the quality of such services is still met in the event of users’ mobility, migrating services across different computing nodes becomes essential. Several studies have emerged recently to address service migration in different edge-centric research areas, including fog computing, multi-access edge computing (MEC), cloudlets, and vehicular clouds. Since existing surveys in this area focus on either VM migration in general or migration in a single research field (e.g., MEC), the objective of this survey is to bring together studies from different, yet related, edge-centric research fields while capturing the different facets they addressed. More specifically, we examine the diversity characterizing the landscape of migration scenarios at the edge, present an objective-driven taxonomy of the literature, and highlight contributions that rather focused on architectural design and implementation. Finally, we identify a list of gaps and research opportunities based on the observation of the current state of the literature. One such opportunity lies in joining efforts from both networking and computing research communities to facilitate future research in this area.Peer ReviewedPreprin

    QoS-aware service continuity in the virtualized edge

    Get PDF
    5G systems are envisioned to support numerous delay-sensitive applications such as the tactile Internet, mobile gaming, and augmented reality. Such applications impose new demands on service providers in terms of the quality of service (QoS) provided to the end-users. Achieving these demands in mobile 5G-enabled networks represent a technical and administrative challenge. One of the solutions proposed is to provide cloud computing capabilities at the edge of the network. In such vision, services are cloudified and encapsulated within the virtual machines or containers placed in cloud hosts at the network access layer. To enable ultrashort processing times and immediate service response, fast instantiation, and migration of service instances between edge nodes are mandatory to cope with the consequences of user’s mobility. This paper surveys the techniques proposed for service migration at the edge of the network. We focus on QoS-aware service instantiation and migration approaches, comparing the mechanisms followed and emphasizing their advantages and disadvantages. Then, we highlight the open research challenges still left unhandled.publishe

    Service migration versus service replication in Multi-access Edge Computing

    Get PDF
    Envisioned low-latency services in 5G, like automated driving, will rely mainly on Multi-access Edge Computing (MEC) to reduce the distance, and hence latency, between users and the remote applications. MEC hosts will be deployed close to mobile base stations, constituting a highly distributed computing platform. However, user mobility may raise the need to migrate a MEC application among MEC hosts to ensure always connecting users to the optimal server, in terms of geographical proximity, Quality of Service (QoS), etc. However, service migration may introduce: (i) latency for users due to the downtime duration; (ii) cost for the network operator as it consumes bandwidth to migrate services. One solution could be the use of service replication, which pro-actively replicates the service to avoid service migration and ensure low latency access. Service replication induces cost in terms of storage, though, requiring a careful study on the number of service to replicate and distribute in MEC. In this paper, we propose to compare service migration and service replication via an analytical model. The proposed model captures the relation between user mobility and service duration on service replication as well as service migration costs. The obtained results allow to propose recommendations between using service migration or service replication according to user mobility and the number of replicates to use for two types of service.This work was partially funded by the European Union’s Horizon 2020 research and innovation program under the 5GTransformer project (grant no. 761536
    • …
    corecore