82 research outputs found

    Informationsrouting, Korrespondenzfindung und Objekterkennung im Gehirn

    Get PDF
    The dissertation deals with the general problem of how the brain can establish correspondences between neural patterns stored in different cortical areas. Although an important capability in many cognitive areas like language understanding, abstract reasoning, or motor control, this thesis concentrates on invariant object recognition as application of correspondence finding. One part of the work presents a correspondence-based, neurally plausible system for face recognition. Other parts address the question of visual information routing over several stages by proposing optimal architectures for such routing ('switchyards') and deriving ontogenetic mechanisms for the growth of switchyards. Finally, the idea of multi-stage routing is united with the object recognition system introduced before, making suggestions of how the so far distinct feature-based and correspondence-based approaches to object recognition could be reconciled.Allgemein gesprochen beschäftigt sich die vorliegende Arbeit mit der Frage, wie das Gehirn Korrespondenzen zwischen Aktivitätsmustern finden kann. Dies ist ein zentrales Thema in der visuellen Objekterkennung, hat aber Bedeutung für alle Bereiche der neuronalen Datenverarbeitung vom Hören bis zum abstrakten Denken. Das Korrespondenzfinden sollte invariant gegenüber Veränderungen sein, die das Erscheinungsbild, aber nicht die Bedeutung der Muster ändern. Außerdem sollte es auch funktionieren, wenn die beiden Muster nicht direkt, sondern nur über Zwischenstationen miteinander verbunden sind. Voraussetzungen für das invariante Korrespondenzfinden zwischen Mustern sind einerseits die Existenz sinnvoller Verbindungsstrukturen, und andererseits ein prinzipieller neuronaler Mechanismus zum Finden von Korrespondenzen. Mit einem prinzipiellen Korrespondenzfindungsmechanismus befasst sich Kapitel 2 der Arbeit. Dieser beruht auf dynamischen Links zwischen den Punkten beider Muster, die durch punktuelle ähnlichkeit der Muster und globale Konsistenz mit benachbarten Links aktiviert werden. In mehrschichtigen Systemen können dynamische Links außer zur Korrespondenzfindung auch zum kontrollierten Routing von Information verwendet werden. Unter Verwendung dieser Eigenschaft wird in Kapitel 2 ein Gesichtserkennungssystem entwickelt, das invariant gegenüber Verschiebung und robust gegenüber Verformungen ist und gute Performanz auf Benchmarkdatenbanken In Kapitel 3 wird untersucht, was die sparsamste Methode ist, neuronale Muster so zu verbinden, dass es von jedem Punkt des einen Musters einen Pfad zu jedem Punkt des anderen gibt und visuelle Information von einem Muster zum anderen geroutet werden kann. Dabei wird die Gesamtmenge an benötigten neuronalen Ressourcen, also sowohl Verbindungen als auch merkmalrepräsentierende Einheiten der Zwischenschichten, minimiert. Dies führt zu mehrstufigen Strukturen mit weit gespreizten, aber dünn besetzten Verästelungen, die wir Switchyards nennen. Bei der Interpretation der Ergebnisse zeigt sich, dass Switchyards mit den qualitativen und quantitativen Gegebenheiten im Primatenhirn vereinbar sind, soweit diese bekannt sind. Kapitel 4 beschäftigt sich mit der Frage, wie solche doch recht komplizierten neuronalen Verbindungsstrukturen ontogenetisch entstehen können. Es wird ein möglicher Mechanismus vorgestellt, der auf chemischen Markern basiert. Die Marker werden von den Einheiten der untersten Schicht gebildet und diffundieren durch die entstehenden Verbindungen nach oben. Verbindungen wachsen bevorzugt zwischen Einheiten, die sehr unähnliche chemische Marker enthalten. Die resultierenden Verbindungsstrukturen sind beinahe identisch mit den in Kapitel 3 analytisch hergeleiteten Architekturen und biologisch sogar noch plausibler. Kapitel 5 führt die Ideen der vorangegangenen Kapitel zusammen, um das Korrespondenzfinden zwischen Mustern über mehrstufige Routingstrukturen hinweg zu realisieren. Es wird gezeigt, wie mit Hilfe von Switchyards Korrespondenzen zwischen normalen'' visuellen Mustern gefunden werden können, obwohl anfangs keine der einzelnen Stufen des Switchyards auf beiden Seiten Muster anliegen hat, die miteinander abgeglichen werden könnten. Im Anschluss wird das Prinzip zu einem vollständigen Erkennungssystem ausgebaut, das über mehrere Routingstufen hinweg ein gegebenes Eingangsmuster positionsinvariant einem mehrerer gespeicherter Muster zuordnen kann

    Prä- und postnatale Entwicklung topographischer Transformationen im Gehirn

    Get PDF
    This dissertation connects two independent fields of theoretical neuroscience: on the one hand, the self-organization of topographic connectivity patterns, and on the other hand, invariant object recognition, that is the recognition of objects independently of their various possible retinal representations (for example due to translations or scalings). The topographic representation is used in the presented approach, as a coordinate system, which then allows for the implementation of invariance transformations. Hence this study shows, that it is possible that the brain self-organizes before birth, so that it is able to invariantly recognize objects immediately after birth. Besides the core hypothesis that links prenatal work with object recognition, advancements in both fields themselves are also presented. In the beginning of the thesis, a novel analytically solvable probabilistic generative model for topographic maps is introduced. And at the end of the thesis, a model that integrates classical feature-based ideas with the normalization-based approach is presented. This bilinear model makes use of sparseness as well as slowness to implement "optimal" topographic representations. It is therefore a good candidate for hierarchical processing in the brain and for future research.Die vorliegende Arbeit verbindet zwei bisher unabhängig untersuchte Gebiete der theoretischen Neurowissenschaften: zum Einen die vorgeburtliche Selbstorganisation topographischer Verbindungsstrukturen und zum Anderen die invariante Objekterkennung, das heisst, die Erkennung von Objekten trotz ihrer mannigfaltigen retinalen Darstellungen (zum Beispiel durch Verschiebungen oder Skalierungen). Die topographische Repräsentierung wird hierbei während der Selbstorganisation als Koordinatensystem genutzt, um Invarianztransformationen zu implementieren. Dies zeigt die Möglichkeit auf, dass sich das Gehirn bereits vorgeburtlich detailliert selbstorganisieren kann, um nachgeburtlich sofort invariant Erkennen zu können. Im Detail führt Kapitel 2 in ein neues, probabilistisch generatives und analytisch lösbares Modell zur Ontogenese topographischer Transformationen ein. Dem Modell liegt die Annahme zugrunde, dass Ausgabezellen des Systems nicht völlig unkorreliert sind, sondern eine a priori gegebene Korrelation erreichen wollen. Da die Eingabezellen nachbarschaftskorreliert sind, hervorgerufen durch retinale Wellen, ergibt sich mit der Annahme rein erregender Verbindungen eine eindeutige topographische synaptische Verbindungsstruktur. Diese entspricht der bei vielen Spezies gefundenen topographischen Karten, z.B. der Retinotopie zwischen der Retina und dem LGN, oder zwischen dem LGN und dem Neokortex. Kapitel 3 nutzt eine abstraktere Formulierung des Retinotopiemechanismus, welche durch adiabitische Elimination der Aktivitätsvariablen erreicht wird, um den Effekt retinaler Wellen auf ein Modell höherer kortikaler Informationsverarbeitung zu untersuchen. Zu diesem Zweck wird der Kortex vereinfacht als bilineares Modell betrachtet, um einfache modulatorische Nichtlinearitäten mit in Betracht ziehen zu können. Zusätzlich zu den Ein- und Ausgabezellen kommen in diesem Modell Kontrolleinheiten zum Einsatz, welche den Informationsfluss aktiv steuern können und sich durch Wettbewerb und pränatalem Lernen auf verschiedene Muster retinaler Wellen spezialisieren. Die Ergebnisse zeigen, dass die entstehenden Verbindungsstrukturen affinen topographischen Abbildungen (insbesondere Translation, Skalierung und Orientierung) entsprechen, die nach Augenöffnen invariante Erkennung ermöglichen, da sie Objekte in der Eingabe in eine normalisierte Repräsentierung transformieren können. Das Modell wird für den eindimensionalen Fall ausführlich analysiert und die Funktionalität für den biologisch relevanteren zweidimensionalen Fall aufgezeigt. Kapitel 4 verallgemeinert das bilineare Modell des dritten Kapitels zu einem mehrschichtigen Modell, die shifter curcuits''. Diese ermöglichen eine logarithmisch in der Anzahl der Eingabezellen wachsende Anzahl an Synapsen, statt einer prohibitiv quadratischen Anzahl. Ausgenutzt wird die Orthogonalität von Translationen im Raum der Verbindungsstrukturen um diese durch harten Wettbewerb an einzelnen Synapsen zu organisieren. Neurobiologisch ist dieser Mechanismus durch Wettbewerb um einen wachstumsregulierenden Transmitter realisierbar. Kapitel 5 nutzt Methoden des probabilistischen Lernens, um das bilineare Modell auf das Lernen von optimalen Repräsentation der Eingabestatistiken zu optimieren. Da statistischen Methoden zweiter Ordnung, wie zum Beispiel das generative Modell aus Kapitel 2, keine lokalisierten rezeptiven Felder ermöglichen und somit keine (örtliche) Topographie möglich ist, wird sparseness'' verwendet um statistischen Abhängigkeiten höherer Ordnung zu lernen und gleichzeitig Topographie zu implementieren. Anwendungen des so formulierten Modells auf natürliche Bilder zeigen, dass lokalisierte, bandpass filternde rezeptive Felder entstehen, die primären kortikalen rezeptiven Feldern stark ähneln. Desweiteren entstehen durch die erzwungene Topographie Orientierungs- und Frequenzkarten, die ebenfalls kortikalen Karten ähneln. Eine Untersuchung des Modells mit zusätzlicher slowness'' der Ausgabezellen und in zeitlicher Nähe gezeigten transformierten natürlichen Eingabemustern zeigt, dass verschiedene Kontrolleinheiten konsistente und den Eingabetransformationen entsprechende rezeptive Felder entwickeln und somit invariante Darstellungen bezüglich der gezeigten Eingaben entwickeln

    Social Insect-Inspired Adaptive Hardware

    Get PDF
    Modern VLSI transistor densities allow large systems to be implemented within a single chip. As technologies get smaller, fundamental limits of silicon devices are reached resulting in lower design yields and post-deployment failures. Many-core systems provide a platform for leveraging the computing resource on offer by deep sub-micron technologies and also offer high-level capabilities for mitigating the issues with small feature sizes. However, designing for many-core systems that can adapt to in-field failures and operation variability requires an extremely large multi-objective optimisation space. When a many-core reaches the size supported by the densities of modern technologies (thousands of processing cores), finding design solutions in this problem space becomes extremely difficult. Many biological systems show properties that are adaptive and scalable. This thesis proposes a self-optimising and adaptive, yet scalable, design approach for many-core based on the emergent behaviours of social-insect colonies. In these colonies there are many thousands of individuals with low intelligence who contribute, without any centralised control, to complete a wide range of tasks to build and maintain the colony. The experiments presented translate biological models of social-insect intelligence into simple embedded intelligence circuits. These circuits sense low-level system events and use this manage the parameters of the many-core's Network-on-Chip (NoC) during runtime. Centurion, a 128-node many-core, was created to investigate these models at large scale in hardware. The results show that, by monitoring a small number of signals within each NoC router, task allocation emerges from the social-insect intelligence models that can self-configure to support representative applications. It is demonstrated that emergent task allocation supports fault tolerance with no extra hardware overhead. The response-threshold decision making circuitry uses a negligible amount of hardware resources relative to the size of the many-core and is an ideal technology for implementing embedded intelligence for system runtime management of large-complexity single-chip systems

    Organization and development of cholinergic input to the mouse visual thalamus.

    Get PDF
    Cholinergic signaling plays a vital role in modulating the flow of sensory information through thalamic circuits in a state-dependent manner. In the dorsal lateral geniculate nucleus (dLGN), the thalamic visual relay, release of acetylcholine (ACh) contributes to enhanced thalamocortical transfer of retinal signal during behavioral states of arousal, wakefulness, and sleep/wake transitions. Moreover, ACh modulates activity of the thalamic reticular nucleus (TRN), a structure which provides inhibitory input to dLGN. While several cholinergic nuclei have been shown to innervate dLGN and TRN, it is unclear how projections from each area are organized. Furthermore, little is known of how or when cholinergic fibers arrive and form functional synapses during development. To address these questions, we used a genetically modified mouse (ChAT-Cre) mouse to selectively visualize cholinergic projections to dLGN and TRN. We conducted anterograde viral tracing, demonstrating a mainly contralateral cholinergic projection from the parabigeminal nucleus to dLGN. In addition, we saw a sparse ipsilateral projection from the rostral pedunculopontine tegmentum to dLGN and TRN. Next, we used a fluorescent reporter line (Ai9) to visualize cholinergic innervation in dLGN and TRN during early postnatal life. In dLGN, innervation began by the end of the first week, increased steadily with age, and reached an adult-like state by the end of the first month. Furthermore, using a model of visual deafferentation (math5-/-), we showed that the absence of retinal input resulted in disruptions in the trajectory, rate, and pattern of cholinergic innervation in dLGN. In TRN, innervation began during week 1 in the ventral non-visual sectors, proceeded into the dorsal visual sector during week 2, and reached adult-like levels by week 3. To assess the functional maturation of cholinergic synapses within TRN, we used a channelrhodopsin-2 reporter and selectively stimulated cholinergic afferents while conducting recordings from TRN neurons. Postsynaptic responses appeared in non-visual sectors of TRN during the first postnatal week, and in the visual sector by week 2. By the end of the first month, all sectors of TRN exhibited adult-like biphasic responses. Together, these studies shed light on the organizational pattern and developmental progression of cholinergic input to the visual thalamus

    Comparative cortical connectomics: three-layered cortex in mouse and turtle

    Get PDF

    Neurochemistry

    Get PDF
    Neurochemistry is a flourishing academic field that contributes to our understanding of molecular, cellular and medical neurobiology. As a scientific discipline, neurochemistry studies the role of chemicals that build the nervous system, it explores the function of neurons and glial cells in health and disease, it discovers aspects of cell metabolism and neurotransmission, and it reveals how degenerative processes are at work in the nervous system. Accordingly, this book contains chapters from a variety of topics that fall into the following broad sections: I. Neural Membranes and Intracellular Signaling, II. Neural Processing and Intercellular Signaling, III. Growth, Development and Differentiation, and IV. Neurodegenerative Diseases. The book presents comprehensive reviews in these different areas written by experts in their respective fields. Neurodegeneration and neuronal diseases are featured prominently and are a recurring theme throughout most chapters. This book will be a most valuable resource for neurochemists and other scientists alike. In addition, it will contribute to the training of current and future neurochemists and, hopefully, will lead us on the path to curing some of the biggest challenges in human health

    Células madre en el oído interno: trasplante celular en el órgano de Corti

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Medicina. Departamento de Medicina. Fecha de lectura: 18 de Junio 200

    Úloha inhibičních interneuronů při kódovaní komplexních zvuků sluchovou kůrou myši

    Get PDF
    Výsledky nedávno publikovaných štúdii ukazujú, že vnímanie akustických stimulov v sluchovej kôre myši môže vykazovať charakter kategorizácie objektovo-založených reprezentácii. Lokálne populácie neurónov nachádzajúce sa v spojenej druhej a tretej vrstve sluchovej kôry myši, údajne vykazujú malý počet stabilných módov odpovedi (1-3), vyvolávaných viacerými komplexnými zvukmi s rozdielnymi akustickými vlastnosťami. Stimulácie za použitia batérie dvoch lineárne zmiešaných zvukov vyvolávajúcich rozdielne módy odpovede preukázali, že takto definované kôrové reprezentácie vykazujú atraktorovú dynamiku. Módy odpovedi môžu podľa autorov reprezentovať nervový korelát vnemových kategórii. Vyvinuli sme protokol, ktorý umožňuje dlhodobé pozorovanie vyššie popísaného populačného kódovania, za použitia dvojfotónovej excitácie u bdelých zvierat. Využitím tohto protokolu sme získali výsledky, ktoré naznačujú že kôrové módy definované konzistentnými populačnými odpoveďami vykazujú stabilitu v časovom horizonte jedného týždňa. Naše predbežné výsledky tiež naznačujú, že priemerná aktivita somatostatín-pozitívnych interneurónov (SST+ INs) behom náhlych zmien v lokálnej reprezentácii dosahuje maximum v priebehu prítomnosti nervového korelátu módu odpovede daného aktivitou excitačných neurónov. Naše dáta taktiež...Recent findings suggest, that perception of acoustic stimuli in the mouse auditory cortex relies on categorization of object-based representations. Local neuronal populations in L2/3 of the mouse auditory cortex reportedly exhibit a limited number (1-3) of stable modes of response, each possibly evoked by multiple complex sounds of variable acoustic features. Stimulation using linear intensity mixing of sounds evoking different response modes revealed an attractor-like dynamic of the underlying representation. These modes of response were hypothesized to represent the neural correlate of perceptual categorization. We have developed an experimental protocol enabling chronic two-photon imaging of the previously described population coding under awake conditions. Using this protocol we acquired data suggesting that the pattern of population activity underlying a mode of response, is stable during a week-long timeframe. We have also recorded the neural activity of a local subpopulation of somatostatin-positive inhibitory interneurons (SST+ INs) during abrupt changes in cortical representation. Our preliminary results suggest that local SST+ INs exhibit maximal firing when the neural correlate of a mode of response is exhibited by the surrounding population of principal cells. In addition, we observed a...Katedra fyziologieDepartment of PhysiologyPřírodovědecká fakultaFaculty of Scienc

    Early postnatal development of neocortex-wide activity patterns in GABAergic and pyramidal neurons

    Get PDF
    Before the onset of sensory experience, developing circuits generate synchronised activity that will not only influence its wiring, but ultimately contribute to behaviour. These complex functions rely on widely distributed cortical that simultaneously operate at multiple spatiotemporal scales. The timing of GABAergic maturation appears to align with the developmental trajectories of cortical regions, playing a crucial role in the functional development of individual brain areas. While local connectivity in cortical microcircuits has been extensively studied, the dynamics of brain-wide functional maturation, especially for GABAergic populations, remain underexplored. In this project, a dual-colour widefield calcium imaging approach was developed to examine the neocortex-wide dynamics of cortical GABAergic and excitatory neurons simultaneously across early postnatal development. This study provides the first broad description of neocortex-wide GABAergic developmental trajectories and their cross-talk with excitatory dynamics during the second and third postnatal weeks. The observed spontaneous activity revealed discrete activity domains, reflecting the modular organisation of the cortex. Both excitatory and GABAergic population exhibited an increase in the size and frequency of activity motifs, as well as changes in motif variability. However, as they matured, the distribution of these spatiotemporal properties displayed divergent trajectories across populations and regions. These findings suggest fundamental differences in the spatial organisation of both populations, indicating potential distinct roles in cortical network function development. Moreover, while excitatory and GABAergic dynamics exhibited high correlations, brief deviations from perfect timing were observed. This correlation patterns changed significantly during development and across regions, with the two populations gradually becoming more correlated as they matured. Manipulating inhibition in vivo disrupted these fluctuations, impacting both local activity and the wider functional network.These findings provide valuable insights into the developmental trajectories of spontaneous activity patterns in excitatory and GABAergic cell populations during early postnatal development. The interplay between both neuronal populations plays a critical role in shaping activity patterns, and understanding the underlying mechanisms of their development can provide valuable insights into neurodevelopmental disorders
    corecore